Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 26(24): 6589-6599, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046521

RESUMO

PURPOSE: Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycoprotein that has limited expression in normal adult tissues, but is overexpressed in carcinomas of the gastrointestinal tract, the genitourinary and respiratory systems, and breast cancer. As such, CEACAM5 is an attractive target for antibody-based therapies designed to selectively deliver cytotoxic drugs to certain epithelial tumors. Here, we describe preclinical data for a novel antibody-drug conjugate (ADC), SAR408701, which consists of an anti-CEACAM5 antibody (SAR408377) coupled to a maytansinoid agent DM4 via a cleavable linker. EXPERIMENTAL DESIGN: The specificity and binding affinity of SAR408701 to human and cynomolgus monkey CEACAM5 were tested in vitro. The cytotoxic activity of SAR408701 was assessed in CEACAM5-expressing tumor cell lines and using patient-derived xenograft mouse models of CEACAM5-positive tumors. Pharmacokinetic-pharmacodynamic and pharmacokinetic-efficacy relationships were established. SAR408701 toxicity was evaluated in cynomolgus monkey. RESULTS: SAR408701 bound selectively to human and cynomolgus monkey CEACAM5 with similar apparent Kd values (0.017 nmol/L and 0.024 nmol/L, respectively). Both in vitro and in vivo evaluations showed that SAR408701 has cytotoxic activity, leading to in vivo efficacy in single and repeated dosing. Single doses of SAR408701 induced significant increases in the tumor expression of phosphorylated histone H3, confirming the tubulin-targeting mechanism of action. The overall toxicity profile of SAR408701 in cynomolgus monkey was similar to that observed after intravenous administration of DM4 alone. CONCLUSIONS: On the basis of these preclinical data, the ADC SAR408701 is a promising candidate for development as a potential treatment for patients with CEACAM5-positive tumors.


Assuntos
Anticorpos Monoclonais/química , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Maitansina/química , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Animais , Anticorpos/química , Anticorpos/uso terapêutico , Anticorpos Monoclonais/imunologia , Antineoplásicos/química , Apoptose , Antígeno Carcinoembrionário/imunologia , Proliferação de Células , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/imunologia , Humanos , Macaca fascicularis , Camundongos , Camundongos SCID , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Drug Des Devel Ther ; 8: 1851-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25378905

RESUMO

First-generation taxanes have changed the treatment paradigm for a wide variety of cancers, but innate or acquired resistance frequently limits their use. Cabazitaxel is a novel second-generation taxane developed to overcome such resistance. In vitro, cabazitaxel showed similar antiproliferative activity to docetaxel in taxane-sensitive cell lines and markedly greater activity in cell lines resistant to taxanes. In vivo, cabazitaxel demonstrated excellent antitumor activity in a broad spectrum of docetaxel-sensitive tumor xenografts, including a castration-resistant prostate tumor xenograft, HID28, where cabazitaxel exhibited greater efficacy than docetaxel. Importantly, cabazitaxel was also active against tumors with innate or acquired resistance to docetaxel, suggesting therapeutic potential for patients progressing following taxane treatment and those with docetaxel-refractory tumors. In patients with tumors of the central nervous system (CNS), and in patients with pediatric tumors, therapeutic success with first-generation taxanes has been limited. Cabazitaxel demonstrated greater antitumor activity than docetaxel in xenograft models of CNS disease and pediatric tumors, suggesting potential clinical utility in these special patient populations. Based on therapeutic synergism observed in an in vivo tumor model, cabazitaxel is also being investigated clinically in combination with cisplatin. Nonclinical evaluation of the safety of cabazitaxel in a range of animal species showed largely reversible changes in the bone marrow, lymphoid system, gastrointestinal tract, and male reproductive system. Preclinical safety signals of cabazitaxel were consistent with the previously reported safety profiles of paclitaxel and docetaxel. Clinical observations with cabazitaxel were consistent with preclinical results, and cabazitaxel is indicated, in combination with prednisone, for the treatment of patients with hormone-refractory metastatic prostate cancer previously treated with docetaxel. In conclusion, the demonstrated activity of cabazitaxel in tumors with innate or acquired resistance to docetaxel, CNS tumors, and pediatric tumors made this agent a candidate for further clinical evaluation in a broader range of patient populations compared with first-generation taxanes.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Taxoides/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Conformação Molecular , Neoplasias/patologia , Taxoides/química , Taxoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...