Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1343800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961864

RESUMO

Background: The classical concept of brain sex differentiation suggests that steroid hormones released from the gonads program male and female brains differently. However, several studies indicate that steroid hormones are not the only determinant of brain sex differentiation and that genetic differences could also be involved. Methods: In this study, we have performed RNA sequencing of rat brains at embryonic days 12 (E12), E13, and E14. The aim was to identify differentially expressed genes between male and female rat brains during early development. Results: Analysis of genes expressed with the highest sex differences showed that Xist was highly expressed in females having XX genotype with an increasing expression over time. Analysis of genes expressed with the highest male expression identified three early genes, Sry2, Eif2s3y, and Ddx3y. Discussion: The observed sex-specific expression of genes at early development confirms that the rat brain is sexually dimorphic prior to gonadal action on the brain and identifies Sry2 and Eif2s3y as early genes contributing to male brain development.

2.
Sci Total Environ ; 905: 167340, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37751843

RESUMO

Metal contamination of aquatic environments remains a major concern and has received significant attention in recent years. The present study aimed to evaluate the effects of metal mixtures of varying concentrations over time in a lake receiving runoff water from a decommissioned mine. By subjecting several organisms to this water, we aimed to identify the most susceptible species, thus enabling a comprehensive evaluation of the risk posed by different toxins to the biotic environment. We have evaluated the effects of mixed metal exposure on survival and stress gene expression in selected invertebrate and vertebrate model species. Our observations revealed differences in sensitivity among the invertebrate models Caenorhabditis elegans, Daphnia magna, Ceriodaphnia dubia, and Heterocypris incongruens, as well as in the vertebrate model Zebrafish (Danio rerio) and two cell lines; a zebrafish liver cell line (ZFL) and a human hepatocellular carcinoma cell line (HepG2). While the sensitivity shows great variation among the tested species, the expression of metallothionein was consistent with the levels of metals found in the mixed exposure media. Despite differences in acute toxicity, the universal induction of mt1/A and mt2/B genes make them important biomarkers for assessing the environmental risk of metals.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Metais/toxicidade , Metais/metabolismo , Daphnia , Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...