Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(3): 143, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119559

RESUMO

Oil spills into the oceans cause irreparable damage to marine life and harms the coastal population of the affected areas. The main measures to be taken in response to an oil spill are to reduce the impact on marine life, prevent oil from reaching the shore through its recovery, and accelerate the degradation of unrecovered oil. Any environmental damage can be reduced if the spilled oil is removed from the water quickly and efficiently. Therefore, it is essential to know the treatment strategies for spilled oils. Several technologies are currently available, including booms, skimmers, in situ burning, use of adsorbents, dispersants/surfactants, and bioremediation. The selection of the type of treatment will depend not only on the effectiveness of the technique, but mainly on the type of oil, amount spilled, location, weather, and sea conditions. In this review, the characteristics of oil spills, their origin, destination, and impacts caused, including major accidents around the world, are initially addressed. Then, the main physical, chemical, and biological treatment technologies are presented, describing their advances, advantages, and drawbacks, with a focus on the use of green surfactants. These agents will be described in detail, showing the evolution of research, recent studies, patents, and commercialized products. Finally, the challenges that remain due to spills, the necessary actions, and the prospects for the development of existing treatment technologies are discussed, which must be linked to the use of combined techniques.


Assuntos
Poluição por Petróleo , Biodegradação Ambiental , Monitoramento Ambiental , Poluição por Petróleo/análise , Tensoativos , Água
2.
Biodegradation ; 30(4): 351-361, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31250272

RESUMO

The production of biosurfactant by Pseudomonas aeruginosa TGC01 using crude glycerol and sodium nitrate as the sole substrate and nitrogen source, respectively, was investigated using two mineral culture media. Two inoculum sizes (5 and 10% v/v) and two volumes of the culture medium (50 and 100 mL) in 500 mL Erlenmeyer flask also were used. Enzymatic hydrolyses of waste office paper (WOP), newspaper (NP) and eucalyptus wood chips (EWC) were carried out using the biosurfactant from P. aeruginosa TGC01. The decrease in volume of the culture medium increased the production of rhamnolipid by 500% in relation to concentration obtained when higher volume of culture medium was used. High quantity biosurfactant was recovered (11 g/L) with desired surface active properties after extraction using chloroform:methanol (v/v). The biosurfactant was able to reduce the water surface tension from 72 to 27 mN/m with a critical micelle concentration (CMC) of 100 mg/L and a stable emulsion index (above 60%) in the enzymatic hydrolysis (pH 4.8 and 50 °C for 4 h). Biosurfactant increased the glucose released in the enzymatic hydrolysis in relation to control (without tensoactive) when WOP (19% increase) and NP (113% increase) were used. The process for NP (18% lignin) was economical, given that the biosurfactant present made a delignification process unnecessary.


Assuntos
Glicerol , Pseudomonas aeruginosa , Biodegradação Ambiental , Glicolipídeos , Hidrólise , Lignina , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...