Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioinform Comput Biol ; 17(1): 1940001, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30866738

RESUMO

Xenobiotics biotransformation in humans is a process of the chemical modifications, which may lead to the formation of toxic metabolites. The prediction of such metabolites is very important for drug development and ecotoxicology studies. We created the web-application MetaTox ( http://way2drug.com/mg ) for the generation of xenobiotics metabolic pathways in the human organism. For each generated metabolite, the estimations of the acute toxicity (based on GUSAR software prediction), organ-specific carcinogenicity and adverse effects (based on PASS software prediction) are performed. Generation of metabolites by MetaTox is based on the fragments datasets, which describe transformations of substrates structures to a metabolites structure. We added three new classes of biotransformation reactions: Dehydrogenation, Glutathionation, and Hydrolysis, and now metabolite generation for 15 most frequent classes of xenobiotic's biotransformation reactions are available. MetaTox calculates the probability of formation of generated metabolite - it is the integrated assessment of the biotransformation reactions probabilities and their sites using the algorithm of PASS ( http://way2drug.com/passonline ). The prediction accuracy estimated by the leave-one-out cross-validation (LOO-CV) procedure calculated separately for the probabilities of biotransformation reactions and their sites is about 0.9 on the average for all reactions.


Assuntos
Biologia Computacional , Software , Xenobióticos/farmacocinética , Xenobióticos/toxicidade , Animais , Biotransformação , Codeína/farmacocinética , Codeína/toxicidade , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Descoberta de Drogas/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Internet , Redes e Vias Metabólicas
2.
J Bioinform Comput Biol ; 16(1): 1840002, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29361895

RESUMO

Epilepsy is the fourth most common neurological disease after migraine, stroke, and Alzheimer's disease. Approximately one-third of all epilepsy cases are refractory to the existing anticonvulsants. Thus, there is an unmet need for newer antiepileptic drugs (AEDs) to manage refractory epilepsy (RE). Discovery of novel AEDs for the treatment of RE further retards for want of potential pharmacological targets, unavailable due to unclear etiology of this disease. In this regard, network pharmacology as an area of bioinformatics is gaining popularity. It combines the methods of network biology and polypharmacology, which makes it a promising approach for finding new molecular targets. This work is aimed at discovering new pharmacological targets for the treatment of RE using network pharmacology methods. In the framework of our study, the genes associated with the development of RE were selected based on analysis of available data. The methods of network pharmacology were used to select 83 potential pharmacological targets linked to the selected genes. Then, 10 most promising targets were chosen based on analysis of published data. All selected target proteins participate in biological processes, which are considered to play a key role in the development of RE. For 9 of 10 selected targets, the potential associations with different kinds of epilepsy have been recently mentioned in the literature published, which gives additional evidence that the approach applied is rather promising.


Assuntos
Anticonvulsivantes/farmacologia , Biologia Computacional/métodos , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética , Terapia de Alvo Molecular/métodos , Algoritmos , Humanos , Mapas de Interação de Proteínas/genética , Fluxo de Trabalho
3.
J Chem Inf Model ; 57(4): 638-642, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28345905

RESUMO

A new freely available web-application MetaTox ( http://www.way2drug.com/mg ) for prediction of xenobiotic's metabolism and calculation toxicity of metabolites based on the structural formula of chemicals has been developed. MetaTox predicts metabolites, which are formed by nine classes of reactions (aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation). The calculation of probability for generated metabolites is based on analyses of "structure-biotransformation reactions" and "structure-modified atoms" relationships using a Bayesian approach. Prediction of LD50 values is performed by GUSAR software for the parent compound and each of the generated metabolites using quantitative structure-activity relationahip (QSAR) models created for acute rat toxicity with the intravenous type of administration.


Assuntos
Biologia Computacional/métodos , Internet , Xenobióticos/metabolismo , Xenobióticos/toxicidade , Animais , Humanos , Relação Quantitativa Estrutura-Atividade , Software , Xenobióticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...