Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101688, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143838

RESUMO

A range of cargo adaptor proteins are known to recruit cytoskeletal motors to distinct subcellular compartments. However, the structural impact of cargo recruitment on motor function is poorly understood. Here, we dissect the multimodal regulation of myosin VI activity through the cargo adaptor GAIP-interacting protein, C terminus (GIPC), whose overexpression with this motor in cancer enhances cell migration. Using a range of biophysical techniques, including motility assays, FRET-based conformational sensors, optical trapping, and DNA origami-based cargo scaffolds to probe the individual and ensemble properties of GIPC-myosin VI motility, we report that the GIPC myosin-interacting region (MIR) releases an autoinhibitory interaction within myosin VI. We show that the resulting conformational changes in the myosin lever arm, including the proximal tail domain, increase the flexibility of the adaptor-motor linkage, and that increased flexibility correlates with faster actomyosin association and dissociation rates. Taken together, the GIPC MIR-myosin VI interaction stimulates a twofold to threefold increase in ensemble cargo speed. Furthermore, the GIPC MIR-myosin VI ensembles yield similar cargo run lengths as forced processive myosin VI dimers. We conclude that the emergent behavior from these individual aspects of myosin regulation is the fast, processive, and smooth cargo transport on cellular actin networks. Our study delineates the multimodal regulation of myosin VI by the cargo adaptor GIPC, while highlighting linkage flexibility as a novel biophysical mechanism for modulating cellular cargo motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cadeias Pesadas de Miosina , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosinas/genética , Miosinas/metabolismo
2.
IEEE ASME Trans Mechatron ; 23(4): 1532-1542, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30595643

RESUMO

Optical tweezers have enabled important insights into intracellular transport through the investigation of motor proteins, with their ability to manipulate particles at the microscale, affording femto newton force resolution. Its use to realize a constant force clamp has enabled vital insights into the behavior of motor proteins under different load conditions. However, the varying nature of disturbances and the effect of thermal noise pose key challenges to force regulation. Furthermore, often the main aim of many studies is to determine the motion of the motor and the statistics related to the motion, which can be at odds with the force regulation objective. In this article, we propose a mixed objective H 2 /H ∞ optimization framework using a model-based design, that achieves the dual goals of force regulation and real time motion estimation with quantifiable guarantees. Here, we minimize the H ∞ norm for the force regulation and error in step estimation while maintaining the H 2 norm of the noise on step estimate within user specified bounds. We demonstrate the efficacy of the framework through extensive simulations and an experimental implementation using an optical tweezer setup with live samples of the motor protein 'kinesin'; where regulation of forces below 1 piconewton with errors below 10% is obtained while simultaneously providing real time estimates of motor motion.

3.
Entropy (Basel) ; 20(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265838

RESUMO

This article analyzes the effect of imperfections in physically realizable memory. Motivated by the realization of a bit as a Brownian particle within a double well potential, we investigate the energetics of an erasure protocol under a Gaussian mixture model. We obtain sharp quantitative entropy bounds that not only give rigorous justification for heuristics utilized in prior works, but also provide a guide toward the minimal scale at which an erasure protocol can be performed. We also compare the results obtained with the mean escape times from double wells to ensure reliability of the memory. The article quantifies the effect of overlap of two Gaussians on the the loss of interpretability of the state of a one bit memory, the required heat dissipated in partially successful erasures and reliability of information stored in a memory bit.

4.
Phys Rev E ; 95(6-1): 062121, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709259

RESUMO

We study the thermodynamics of a Brownian particle under the influence of a time-multiplexed harmonic potential of finite width. The memory storage mechanism and the erasure protocol based on time-multiplexed potentials are utilized to experimentally realize erasure with work performed close to Landauer's bound. We quantify the work performed on the system with respect to the duty ratio of time multiplexing, which also provides a handle for approaching reversible erasures. A Langevin dynamics based simulation model is developed for the proposed memory bit and the erasure protocol, which guides the experimental realization. The study also provides insight into transport on the microscale.

5.
PLoS Comput Biol ; 12(11): e1005152, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812098

RESUMO

Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins-proteins converting chemical energy into kinetic energy. It is understood that motor proteins work in teams enabling unidirectional and bidirectional transport of intracellular cargo over long distances. Disruptions of the underlying transport mechanisms, often caused by mutations that alter single motor characteristics, are known to cause neurodegenerative diseases. For example, phosphorylation of kinesin motor domain at the serine residue is implicated in Huntington's disease, with a recent study of phosphorylated and phosphomimetic serine residues indicating lowered single motor stalling forces. In this article we report the effects of mutations of this nature on transport properties of cargo carried by multiple wild-type and mutant motors. Results indicate that mutants with altered stall forces might determine the average velocity and run-length even when they are outnumbered by wild type motors in the ensemble. It is shown that mutants gain a competitive advantage and lead to an increase in the expected run-length when the load on the cargo is in the vicinity of the mutant's stalling force or a multiple of its stalling force. A separate contribution of this article is the development of a semi-analytic method to analyze transport of cargo by multiple motors of multiple types. The technique determines transition rates between various relative configurations of motors carrying the cargo using the transition rates between various absolute configurations. This enables a computation of biologically relevant quantities like average velocity and run-length without resorting to Monte Carlo simulations. It can also be used to introduce alterations of various single motor parameters to model a mutation and to deduce effects of such alterations on the transport of a common cargo by multiple motors. Our method is easily implementable and we provide a software package for general use.


Assuntos
Microtúbulos/química , Microtúbulos/fisiologia , Modelos Biológicos , Modelos Químicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Simulação por Computador , Transferência de Energia/fisiologia , Modelos Estatísticos , Movimento (Física) , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...