Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 6(11): 9807-17, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23075161

RESUMO

We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.


Assuntos
Compostos de Alumínio/química , Hidrogênio/química , Hidrogênio/isolamento & purificação , Magnésio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Sódio/química , Titânio/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
2.
Phys Chem Chem Phys ; 14(22): 8160-9, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22569707

RESUMO

Reactive nanoparticles are of great interest for applications ranging from catalysis to energy storage. However, efforts to relate cluster size to thermodynamic stability and chemical reactivity are hampered by broad pore size distributions and poorly characterized chemical environments in many microporous templates. Metal hydrides are an important example of this problem. Theoretical calculations suggest that reducing their critical dimension to the nanoscale can in some cases considerably destabilize these materials and there is clear experimental evidence for accelerated kinetics, making hydrogen storage applications more attractive in some cases. However, quantitative measurements establishing the influence of size on thermodynamics are lacking, primarily because carbon aerogels often used as supports provide inadequate control over size and pore chemistry. Here, we employ the nanoporous metal-organic framework (MOF) Cu-BTC (also known as HKUST-1) as a template to synthesize and confine the complex hydride NaAlH(4). The well-defined crystalline structure and monodisperse pore dimensions of this MOF allow detailed, quantitative probing of the thermodynamics and kinetics of H(2) desorption from 1-nm NaAlH(4) clusters (NaAlH(4)@Cu-BTC) without the ambiguity associated with amorphous templates. Hydrogen evolution rates were measured as a function of time and temperature using the Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry method, in which sample mass changes are correlated with a complete analysis of evolved gases. NaAlH(4)@Cu-BTC undergoes a single-step dehydrogenation reaction in which the Na(3)AlH(6) intermediate formed during decomposition of the bulk hydride is not observed. Comparison of the thermodynamically controlled quasi-equilibrium reaction pathways in the bulk and nanoscale materials shows that the nanoclusters are slightly stabilized by confinement, having an H(2) desorption enthalpy that is 7 kJ (mol H(2))(-1) higher than the bulk material. In addition, the activation energy for desorption is only 53 kJ (mol H(2))(-1), more than 60 kJ (mol H(2))(-1) lower than the bulk. When combined with first-principles calculations of cluster thermodynamics, these data suggest that although interactions with the pore walls play a role in stabilizing these particles, size exerts the greater influence on the thermodynamics and reaction rates.

3.
J Am Chem Soc ; 131(37): 13198-9, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19719170

RESUMO

Metal-organic frameworks (MOFs) offer an attractive alternative to traditional hard and soft templates for nanocluster synthesis because their ordered crystalline lattice provides a highly controlled and inherently understandable environment. We demonstrate that MOFs are stable hosts for metal hydrides proposed for hydrogen storage and their reactive precursors, providing platform to test recent theoretical predictions that some of these materials can be destabilized with respect to hydrogen desorption by reducing their critical dimension to the nanoscale. With the MOF HKUST-1 as template, we show that NaAlH(4) nanoclusters as small as eight formula units can be synthesized. The confinement of these clusters within the MOF pores dramatically accelerates the desorption kinetics, causing decomposition to occur at approximately 100 degrees C lower than bulk NaAlH(4). However, using simultaneous thermogravimetric modulated beam mass spectrometry, we also show that the thermal decomposition mechanism of NaAlH(4) is complex and may involve processes such as nucleation and growth in addition to the normally assumed two-step chemical decomposition reactions.

4.
Dalton Trans ; (28): 3485-90, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16832499

RESUMO

Novel mixed amido-malonato complexes of titanium are reported. The complexes were synthesized by partially replacing the amido groups from the complexes [Ti(NMe2)4] and [Ti(NEt2)4] via Brønstedt acid/base reactions, using the malonate-ligands di-isopropylmalonate (Hdpml) and di-tert-butylmalonate (Hdbml). Four representative complexes were synthesized and fully characterised by 1H NMR, 13C NMR, CHN analysis and mass spectrometry. The crystal structures of the six-coordinated complexes [Ti(NMe2)2(dbml)2] (3) and [Ti(NEt2)2(dbml)2] (4) are presented and discussed. The complexes are solids and the chemical and thermal characteristics of the complexes strongly depend on the substitution at the malonate ligand. While dpml containing complexes show a promising behaviour for classical MOCVD, dbml containing complexes seem to be more suitable for liquid injection-metal-organic chemical vapour deposition (LI-MOCVD). Based on its thermal characteristics, the most promising complex for thermal CVD, [Ti(NEt2)2(dpml)2] (2) was selected for preliminary MOCVD experiments, which indicate a good suitability for the deposition of TiO2 thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...