Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(1): 463-476, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34739690

RESUMO

BACKGROUND: Rapamycin is hormetic in nature-it demonstrates contrasting effects at high and low doses. It is toxic at moderate/high doses, while it can restrain aging and extend lifespan at low doses. However, it is not fully understood how rapamycin governs cellular aging. On the other hand, aging is putatively correlated to mitochondrial dysregulation. Although previous studies have suggested that hormetic (low) doses of rapamycin can cause partial/incomplete inhibition of mTOR, the actual modus operandi of how such partial mTOR inhibition might modulate the mTOR-mitochondria cross-talk remained to be deciphered in the context of cellular aging. The present study was designed to understand the hormetic effects of rapamycin on cellular factors that govern aging-associated changes in mitochondrial facets, such as functional and metabolic homeostases, sustenance of membrane potential, biogenesis, mitophagy, and oxidative injury to mitochondrial macromolecules. METHODS AND RESULTS: WRL-68 cells treated (24 h) with variable doses of rapamycin were studied for estimating their viability, apoptosis, senescence, mitochondrial density and Δψm. Expression levels of key functional proteins were estimated by immunofluorescence/immunoblots. Oxidative damage to mtDNA/mtRNA/proteins was measured in mitochondrial lysates. We demonstrated that hormetic doses (0.1 and 1 nM) of rapamycin can alleviate aging-associated mitochondrial dyshomeostasis in WRL-68 cells, such as oxidative injury to mitochondrial nucleic acids and proteins, as well as disequilibrium of mitochondrial density, membrane potential, biogenesis, mitophagy and overall metabolism. CONCLUSIONS: We established that low doses of rapamycin can hormetically amend the mTOR-mitochondria cross-talk, and can consequently promote anti-aging outcome in cells.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sirolimo/administração & dosagem
2.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188524, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582170

RESUMO

Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.


Assuntos
Centrossomo/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Mitose
3.
Chem Biol Interact ; 331: 109250, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956706

RESUMO

Triple-negative breast cancer is the most aggressive form of breast cancer with limited intervention options. Moreover, a number of belligerent therapeutic strategies adopted to treat such aggressive forms of cancer have demonstrated detrimental side effects. This necessitates exploration of targeted chemotherapeutics. We assessed the efficacy of a novel indenone derivative (nID) [(±)-N-(2-(-5-methoxy-1-oxo-3-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-inden-2-yl)ethyl)-4-methylbenzenesulfonamide], synthesized by a novel internal nucleophile-assisted palladium-catalyzed hydration-olefin insertion cascade; against triple-negative breast cancer cells (MDA-MB-231). On 24 h treatment, the nID caused decline in the viability of MDA-MB-231 and MDA-MB-468 cells, but did not significantly (P < 0.05) affect WRL-68 (epithelial-like) cells. In fact, the nID demonstrated augmentation of p53 expression, and consequent p53-dependent senescence in both MDA-MB-231 and MDA-MB-468 cells, but not in WRL-68 cells. The breast cancer cells also exhibited reduced proliferation, downregulated p65/NF-κB and survivin, along with augmented p21Cip1/WAF1 expression, on treatment with the nID. This ensued cell cycle arrest at G1 stage, which might have driven the MDA-MB-231 cells to senescence. We observed a selectivity of the nID to target MDA-MB-231 cells, whereas WRL-68 cells did not show any considerable effect. The results underscored that the nID has potential to be developed into a cancer therapeutic.


Assuntos
Antineoplásicos/síntese química , Senescência Celular , Sulfonamidas/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Paládio/química , Sulfonamidas/síntese química , Survivina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Benzenossulfonamidas
4.
3 Biotech ; 10(5): 191, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32269896

RESUMO

In this study, we assessed the potential of aqueous extract (CSEaq) of Cuminum cyminum L. (cumin) seeds in protecting WRL-68 cells from hexavalent chromium [Cr(VI)]-induced oxidative injury. Cells exposed to Cr(VI) (10 µM CrO3) for 24 h demonstrated a twofold increase in ROS, which, in turn, led to extensive oxidative stress, consequently causing colossal decline in cell viability (by 58.82 ± 9.79%) and proliferation (as was evident from a reduced expression of Ki-67, a proliferation marker). Immunofluorescence studies showed that Cr(VI) diminished the expressions of mTOR and survivin in WRL-68 cells. It also led to a substantial elevation of BECN1 expression, which suggested autophagy. Overall, our results indicated that 24 h exposure of WRL-68 cells to Cr(VI) caused oxidative stress-induced autophagic cell death. CSEaq was found to protect WRL-68 cells from the same fate by refurbishing their viability and proliferation in a dose-dependent manner. The extract reduced ROS in these cells, which consequently decreased the degree of autophagic cell death by restoring expressions of mTOR, survivin and BECN1 to their respective normal levels. Biochemical assays revealed that CSEaq is rich in phenolic constituents. Total phenolic content of CSEaq demonstrated positive correlations with (i) its antioxidant potential, (ii) its alleviation of cellular oxidative stress and (iii) its cytoprotective efficacy in Cr(VI)-treated WRL-68 cells. We also identified the major phenolic constituents of CSEaq. Our study suggested that polyphenols in CSEaq might be responsible for protecting WRL-68 cells from Cr(VI)-governed oxidative assault that would have otherwise led to survivin/mTOR-mediated autophagic death.

5.
Med Hypotheses ; 141: 109702, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32289643

RESUMO

Sepsis is a grievous health concern with limited understanding of its precise etiology. Although studies on sepsis have implicated the Warburg effect (mitigation of mitochondrial oxidative phosphorylation, as evident from aerobic glycolysis), we propose that an evolutionary perspective might further unravel its etiology. The endosymbiotic theory suggests that evolution of a eukaryotic cell is a consequence of the fruitful association between an archaea (Asgard) and an alphaproteobacterium (Rickettsia). We hypothesize that, during pathological conditions like sepsis, such endosymbiotic homeostasis between the two systems is perturbed. We underscore the fact (supported by in silico homology analyses) that during sepsis, the Asgard component of a cell is promoted to trigger aerobic glycolysis as well as the innate immune response (spearheaded by the TLR pathway), while suppressing the Rickettsia counterpart, thereby promoting the Warburg effect. It might be this discord between the two endosymbiotic partners (Asgard and Rickettsia-derived cellular components) that promotes sepsis.


Assuntos
Amigos , Sepse , Células Eucarióticas , Homeostase , Humanos , Simbiose
6.
Mitochondrion ; 46: 195-208, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29890303

RESUMO

In the recent years, the reported cases of mitochondrial disorders have reached a colossal number. These disorders spawn a sundry of pathological conditions, which lead to pernicious symptoms and even fatality. Due to the unpredictable etiologies, mitochondrial diseases are putatively referred to as "mystondria" (mysterious diseases of mitochondria). Although present-day research has greatly improved our understanding of mitochondrial disorders, effective therapeutic interventions are still at the precursory stage. The conundrum becomes further complicated because these pathologies might occur due to either mitochondrial DNA (mtDNA) mutations or due to mutations in the nuclear DNA (nDNA), or both. While correcting nDNA mutations by using gene therapy (replacement of defective genes by delivering wild-type (WT) ones into the host cell, or silencing a dominant mutant allele that is pathogenic) has emerged as a promising strategy to address some mitochondrial diseases, the complications in correcting the defects of mtDNA in order to renovate mitochondrial functions have remained a steep challenge. In this review, we focus specifically on the selective gene therapy strategies that have demonstrated prospects in targeting the pathological mutations in the mitochondrial genome, thereby treating mitochondrial ailments.


Assuntos
Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Doenças Mitocondriais/terapia , DNA Mitocondrial/genética , Genoma Mitocondrial , Humanos , Mutação
7.
Phytomedicine ; 53: 319-331, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30190231

RESUMO

BACKGROUND: Practices of biopiracy to use genetic resources and indigenous knowledge by Western companies without benefit-sharing of those, who generated the traditional knowledge, can be understood as form of neocolonialism. HYPOTHESIS: The One-World Medicine concept attempts to merge the best of traditional medicine from developing countries and conventional Western medicine for the sake of patients around the globe. STUDY DESIGN: Based on literature searches in several databases, a concept paper has been written. Legislative initiatives of the United Nations culminated in the Nagoya protocol aim to protect traditional knowledge and regulate benefit-sharing with indigenous communities. The European community adopted the Nagoya protocol, and the corresponding regulations will be implemented into national legislation among the member states. Despite pleasing progress, infrastructural problems of the health care systems in developing countries still remain. Current approaches to secure primary health care offer only fragmentary solutions at best. Conventional medicine from industrialized countries cannot be afforded by the impoverished population in the Third World. Confronted with exploding costs, even health systems in Western countries are endangered to burst. Complementary and alternative medicine (CAM) is popular among the general public in industrialized countries, although the efficacy is not sufficiently proven according to the standards of evidence-based medicine. CAM is often available without prescription as over-the-counter products with non-calculated risks concerning erroneous self-medication and safety/toxicity issues. The concept of integrative medicine attempts to combine holistic CAM approaches with evidence-based principles of conventional medicine. CONCLUSION: To realize the concept of One-World Medicine, a number of standards have to be set to assure safety, efficacy and applicability of traditional medicine, e.g. sustainable production and quality control of herbal products, performance of placebo-controlled, double-blind, randomized clinical trials, phytovigilance, as well as education of health professionals and patients.


Assuntos
Cooperação Internacional , Medicina Tradicional , Plantas Medicinais , Roubo , Biodiversidade , Colonialismo , Terapias Complementares , Países em Desenvolvimento , Método Duplo-Cego , União Europeia , Medicina Baseada em Evidências , Humanos , Medicina Tradicional/normas , Naturologia , Patentes como Assunto , Controle de Qualidade , Automedicação
8.
Biomed Pharmacother ; 102: 894-911, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29710545

RESUMO

Chemotherapy is one of the most popular therapeutic strategies to treat cancer. However, cancer chemotherapeutics have often been associated with impairment of the immune system, which might consequently lead to an augmented risk of autoimmune disorders, such as rheumatoid arthritis. Though the accurate mechanistic facets of rheumatoid arthritis induction have not been interpreted yet, a conglomeration of genetic and environmental factors might promote its etiology. What makes the scenario more challenging is that patients with rheumatoid arthritis are at a significantly elevated risk of developing various types of cancer. It is intriguing to note that diverse cancer chemotherapy drugs are also commonly used to treat symptoms of rheumatoid arthritis. However, a colossal multitude of such cancer therapeutics has demonstrated highly varied results in rheumatoid arthritis patients, including both beneficial and adverse effects. Herein, we attempt to present a holistic account of the variegated modalities of this complex tripartite cross-talk between cancer, rheumatoid arthritis and chemotherapy drugs in order to decode the sinuous correlation between these two appalling pathological conditions.


Assuntos
Artrite Reumatoide/complicações , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Artrite Reumatoide/induzido quimicamente , Humanos , Modelos Biológicos
9.
Oncotarget ; 8(5): 8921-8946, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27888811

RESUMO

Cancer has long been a grievous disease complicated by innumerable players aggravating its cure. Many clinical studies demonstrated the prognostic relevance of the tumor suppressor protein p53 for many human tumor types. Overexpression of mutated p53 with reduced or abolished function is often connected to resistance to standard medications, including cisplatin, alkylating agents (temozolomide), anthracyclines, (doxorubicin), antimetabolites (gemcitabine), antiestrogenes (tamoxifen) and EGFR-inhibitors (cetuximab). Such mutations in the TP53 gene are often accompanied by changes in the conformation of the p53 protein. Small molecules that restore the wild-type conformation of p53 and, consequently, rebuild its proper function have been identified. These promising agents include PRIMA-1, MIRA-1, and several derivatives of the thiosemicarbazone family. In addition to mutations in p53 itself, p53 activity may be also be impaired due to alterations in p53's regulating proteins such as MDM2. MDM2 functions as primary cellular p53 inhibitor and deregulation of the MDM2/p53-balance has serious consequences. MDM2 alterations often result in its overexpression and therefore promote inhibition of p53 activity. To deal with this problem, a judicious approach is to employ MDM2 inhibitors. Several promising MDM2 inhibitors have been described such as nutlins, benzodiazepinediones or spiro-oxindoles as well as novel compound classes such as xanthone derivatives and trisubstituted aminothiophenes. Furthermore, even naturally derived inhibitor compounds such as α-mangostin, gambogic acid and siladenoserinols have been discovered. In this review, we discuss in detail such small molecules that play a pertinent role in affecting the p53-MDM2 signaling axis and analyze their potential as cancer chemotherapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
10.
Biomed Pharmacother ; 84: 291-304, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27665475

RESUMO

Cancer has remained one of the most indomitable conundrums for scientists over centuries due to its multifarious etiology. While improved therapeutic and diagnostic approaches have commendably augmented the rate of survival of cancer patients, a holistic riddance from the ailment is still implausible. Hence, further explorations to scout for novel strategies of cancer therapy and diagnosis are necessary. Theranostics (amalgamation of therapy and diagnostics) has emerged as one of the avant-garde strategies, which provides a two-pronged advantage in cancer management. This integrative approach has found immense relevance in light of nanotechnology. Nanoparticles can be customized (loaded with a mélange of therapeutic drugs and diagnostic probes) to develop theranostic properties, thereby constructing nanotheranostic agents. These nano-composites are lucrative tools for cancer cell obliteration and simultaneous monitoring of the drug action, and can also be tailored for targeted drug delivery. Nanotheranostic agents have emerged as a prudent ploy for synchronized cancer intervention and detection of the 'route and reach' of the drugs. In this review, we discuss the diversified state-of-the-art facets of theranostic nanoparticles, including various nanoparticle-based platforms as well as the plethora of reported therapeutic drugs, aptamers, markers and diagnostic molecules that have found use in the precincts of nanotheranostics.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Oncologia/métodos , Imagem Molecular/métodos , Nanopartículas , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Animais , Humanos , Valor Preditivo dos Testes , Resultado do Tratamento
11.
Phytomedicine ; 23(2): 166-73, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26926178

RESUMO

BACKGROUND: Biopiracy mainly focuses on the use of biological resources and/or knowledge of indigenous tribes or communities without allowing them to share the revenues generated out of economic exploitation or other non-monetary incentives associated with the resource/knowledge. METHODS: Based on collaborations of scientists from five continents, we have created a communication platform to discuss not only scientific topics, but also more general issues with social relevance. This platform was termed 'PhytCancer -Phytotherapy to Fight Cancer' (www.phyt-cancer.uni-mainz.de). As a starting point, we have chosen the topic "biopiracy", since we feel this is of pragmatic significance for scientists working with medicinal plants. RESULTS: It was argued that the patenting of herbs or natural products by pharmaceutical corporations disregarded the ownership of the knowledge possessed by the indigenous communities on how these substances worked. Despite numerous court decisions in U.S.A. and Europe, several international treaties, (e.g. from United Nations, World Health Organization, World Trade Organization, the African Unity and others), sharing of a rational set of benefits amongst producers (mainly pharmaceutical companies) and indigenous communities is yet a distant reality. In this paper, we present an overview of the legal frameworks, discuss some exemplary cases of biopiracy and bioprospecting as excellent forms of utilization of natural resources. CONCLUSIONS: We suggest certain perspectives, by which we as scientists, may contribute towards prevention of biopiracy and also to foster the fair utilization of natural resources. We discuss ways, in which the interests of indigenous people especially from developing countries can be secured.


Assuntos
Produtos Biológicos , Bioprospecção/ética , Indústria Farmacêutica/ética , Etnofarmacologia , Propriedade , Plantas Medicinais , Roubo , Países em Desenvolvimento , Cooperação Internacional , Patentes como Assunto
12.
Pharmaceuticals (Basel) ; 8(4): 865-83, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694419

RESUMO

In the paradigm of drug administration, determining the correct dosage of a therapeutic is often a challenge. Several drugs have been noted to demonstrate contradictory effects per se at high and low doses. This duality in function of a drug at different concentrations is known as hormesis. Therefore, it becomes necessary to study these biphasic functions in order to understand the mechanistic basis of their effects. In this article, we focus on different molecules and pathways associated with diseases that possess a duality in their function and thus prove to be the seat of hormesis. In particular, we have highlighted the pathways and factors involved in the progression of cancer and how the biphasic behavior of the molecules involved can alter the manifestations of cancer. Because of the pragmatic role that it exhibits, the imminent need is to draw attention to the concept of hormesis. Herein, we also discuss different stressors that trigger hormesis and how stress-mediated responses increase the overall adaptive response of an individual to stress stimulus. We talk about common pathways through which cancer progresses (such as nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1), sirtuin-forkhead box O (SIRT-FOXO) and others), analyzing how diverse molecules associated with these pathways conform to hormesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...