Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc IEEE Int Symp Biomed Imaging ; 2017: 654-658, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29081898

RESUMO

Single particle reconstruction (SPR) from cryo-electron microscopy (EM) is a technique in which the 3D structure of a molecule needs to be determined from its contrast transfer function (CTF) affected, noisy 2D projection images taken at unknown viewing directions. One of the main challenges in cryo-EM is the typically low signal to noise ratio (SNR) of the acquired images. 2D classification of images, followed by class averaging, improves the SNR of the resulting averages, and is used for selecting particles from micrographs and for inspecting the particle images. We introduce a new affinity measure, akin to the Mahalanobis distance, to compare cryo-EM images belonging to different defocus groups. The new similarity measure is employed to detect similar images, thereby leading to an improved algorithm for class averaging. We evaluate the performance of the proposed class averaging procedure on synthetic datasets, obtaining state of the art classification.

2.
J Struct Biol ; 195(1): 72-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129418

RESUMO

The problem of image restoration in cryo-EM entails correcting for the effects of the Contrast Transfer Function (CTF) and noise. Popular methods for image restoration include 'phase flipping', which corrects only for the Fourier phases but not amplitudes, and Wiener filtering, which requires the spectral signal to noise ratio. We propose a new image restoration method which we call 'Covariance Wiener Filtering' (CWF). In CWF, the covariance matrix of the projection images is used within the classical Wiener filtering framework for solving the image restoration deconvolution problem. Our estimation procedure for the covariance matrix is new and successfully corrects for the CTF. We demonstrate the efficacy of CWF by applying it to restore both simulated and experimental cryo-EM images. Results with experimental datasets demonstrate that CWF provides a good way to evaluate the particle images and to see what the dataset contains even without 2D classification and averaging.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Substâncias Macromoleculares/química , Animais , Bactérias/ultraestrutura , Simulação por Computador , Emetina/química , Análise de Fourier , Receptores de Inositol 1,4,5-Trifosfato/química , Tamanho da Partícula , Ribossomos/química , Razão Sinal-Ruído , Canais de Cátion TRPV/química
3.
Proc IEEE Int Symp Biomed Imaging ; 2015: 1048-1052, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26677402

RESUMO

In single particle reconstruction (SPR) from cryo-electron microscopy (EM), the 3D structure of a molecule needs to be determined from its 2D projection images taken at unknown viewing directions. Zvi Kam showed already in 1980 that the autocorrelation function of the 3D molecule over the rotation group SO(3) can be estimated from 2D projection images whose viewing directions are uniformly distributed over the sphere. The autocorrelation function determines the expansion coefficients of the 3D molecule in spherical harmonics up to an orthogonal matrix of size (2l + 1) × (2l + 1) for each l = 0,1,2,…. In this paper we show how techniques for solving the phase retrieval problem in X-ray crystallography can be modified for the cryo-EM setup for retrieving the missing orthogonal matrices. Specifically, we present two new approaches that we term Orthogonal Extension and Orthogonal Replacement, in which the main algorithmic components are the singular value decomposition and semidefinite programming. We demonstrate the utility of these approaches through numerical experiments on simulated data.

4.
Phys Rev Lett ; 110(12): 121301, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166787

RESUMO

To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metric's degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional objects from their vibrational spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...