Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(5): 3706-3728, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35192360

RESUMO

Glucose, the primary substrate for ATP synthesis, is catabolized during glycolysis to generate ATP and precursors for the synthesis of other vital biomolecules. Opportunistic viruses and cancer cells often hijack this metabolic machinery to obtain energy and components needed for their replication and proliferation. One way to halt such energy-dependent processes is by interfering with the glycolytic pathway. 2-Deoxy-d-glucose (2-DG) is a synthetic glucose analogue that can inhibit key enzymes in the glycolytic pathway. The efficacy of 2-DG has been reported across an array of diseases and disorders, thereby demonstrating its broad therapeutic potential. Recent approval of 2-DG in India as a therapeutic approach for the management of the COVID-19 pandemic has brought renewed attention to this molecule. The purpose of this perspective is to present updated therapeutic avenues as well as a variety of chemical synthetic strategies for this medically useful sugar derivative, 2-DG.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Desoxiglucose/química , Trifosfato de Adenosina/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , COVID-19/diagnóstico , COVID-19/virologia , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Glicólise/efeitos dos fármacos , Humanos , Marcação por Isótopo , Mitocôndrias/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tomografia por Emissão de Pósitrons , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
2.
Food Chem Toxicol ; 150: 112075, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33617964

RESUMO

Medicinal or herbal plants are widely used for their many favourable properties and are generally safe without any side effects. Saponins are sugar conjugated natural compounds which possess a multitude of biological activities such as medicinal properties, antimicrobial activity, antiviral activity, etc. Saponin production is a part of the normal growth and development process in a lot of plants and plant extracts such as liquorice and ginseng which are exploited as potential drug sources. Herbal compounds have shown a great potential against a wide variety of infectious agents, including viruses such as the SARS-CoV; these are all-natural products and do not show any adverse side effects. This article reviews the various aspects of saponin biosynthesis and extraction, the need for their integration into more mainstream medicinal therapies and how they could be potentially useful in treating viral diseases such as COVID-19, HIV, HSV, rotavirus etc. The literature presents a close review on the saponin efficacy in targeting mentioned viral diseases that occupy a high mortality rate worldwide. This manuscript indicates the role of saponins as a source of dynamic plant based anti-viral remedies and their various methods for extraction from different sources.


Assuntos
Antivirais/isolamento & purificação , Saponinas/isolamento & purificação , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Antivirais/farmacologia , HIV/efeitos dos fármacos , Estrutura Molecular , Orthomyxoviridae/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Saponinas/biossíntese , Saponinas/química , Saponinas/farmacologia
3.
Curr Pharm Des ; 27(33): 3526-3550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33213322

RESUMO

Today, the world is suffering from the pandemic of a novel coronavirus disease (COVID-19), a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the third fatal coronavirus outbreak that has already occurred in the 21st century. Even six months after its emergence, hundreds of thousands of people are still being infected with SARS-CoV-2, and thousands of lives are lost every day across the world. No effective therapy has been approved to date for the treatment of this disease, suggesting the need to broaden the scope in the search for effective treatments. Throughout history, folk medicine has been successfully used to treat various ailments in humans, and Traditional Chinese Medicine has been instrumental in the containment of a number of viral diseases. Owing to their high chemical diversity and safety profiles, natural products offer great promises as potentially effective antiviral drugs. In recent years, a large number of anti-coronaviral phytochemicals with different mechanisms of action have been identified. Among them, tetra-O-galloyl-ß-D-glucose, caffeic acid, and saikosaponin B2 block viral entry. A number of flavonoids inhibit viral proteases. Silvestrol inhibits protein synthesis. Myricetin and scutellarein inhibit viral replication. Emodin, luteolin, and quercetin demonstrate anti-coronaviral activity by inhibiting multiple processes in the virus life cycle. In this review, we critically evaluate the findings of the natural product-based anticoronaviral research that has been published during the last two decades, and attempt to provide a comprehensive description about their utility as potential broad-spectrum anti-coronaviral drugs, examining leads that may guide/facilitate anti-SARS-CoV-2 drug development studies.


Assuntos
Produtos Biológicos , COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Humanos , Pandemias , SARS-CoV-2
4.
Bioorg Med Chem ; 23(20): 6622-31, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26404410

RESUMO

Aspartate-ß-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme.


Assuntos
Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Aspartato-Semialdeído Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Streptococcus pneumoniae/enzimologia , Relação Estrutura-Atividade
5.
Microbiology (Reading) ; 161(Pt 3): 674-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25717169

RESUMO

S-Adenosyl-l-methionine (AdoMet) is an essential metabolite, serving in a very wide variety of metabolic reactions. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for antimicrobial agents. We previously showed that a variety of methionine analogues are MAT substrates, yielding AdoMet analogues that function in specific methyltransfer reactions. However, this left open the question of whether the modified AdoMet molecules could support bacterial growth, meaning that they functioned in the full range of essential AdoMet-dependent reactions. The answer matters both for insight into the functional flexibility of key metabolic enzymes, and for drug design strategies for both MAT inhibitors and selectively toxic MAT substrates. In this study, methionine analogues were converted in vitro into AdoMet analogues, and tested with an Escherichia coli strain lacking MAT (ΔmetK) but that produces a heterologous AdoMet transporter. Growth that yields viable, morphologically normal cells provides exceptionally robust evidence that the analogue functions in every essential reaction in which AdoMet participates. Overall, the S-adenosylated derivatives of all tested l-methionine analogues modified at the carboxyl moiety, and some others as well, showed in vivo functionality sufficient to allow good growth in both rich and minimal media, with high viability and morphological normality. As the analogues were chosen based on incompatibility with the reactions via which AdoMet is used to produce acylhomoserine lactones (AHLs) for quorum sensing, these results support the possibility of using this route to selectively interfere with AHL biosynthesis without inhibiting bacterial growth.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , S-Adenosilmetionina/metabolismo , Acil-Butirolactonas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Estrutura Molecular , S-Adenosilmetionina/análogos & derivados
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3244-52, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478842

RESUMO

The aspartate pathway is essential for the production of the amino acids required for protein synthesis and of the metabolites needed in bacterial development. This pathway also leads to the production of several classes of quorum-sensing molecules that can trigger virulence in certain microorganisms. The second enzyme in this pathway, aspartate ß-semialdehyde dehydrogenase (ASADH), is absolutely required for bacterial survival and has been targeted for the design of selective inhibitors. Fragment-library screening has identified a new set of inhibitors that, while they do not resemble the substrates for this reaction, have been shown to bind at the active site of ASADH. Structure-guided development of these lead compounds has produced moderate inhibitors of the target enzyme, with some selectivity observed between the Gram-negative and Gram-positive orthologs of ASADH. However, many of these inhibitor analogs and derivatives have not yet achieved the expected enhanced affinity. Structural characterization of these enzyme-inhibitor complexes has provided detailed explanations for the barriers that interfere with optimal binding. Despite binding in the same active-site region, significant changes are observed in the orientation of these bound inhibitors that are caused by relatively modest structural alterations. Taken together, these studies present a cautionary tale for issues that can arise in the systematic approach to the modification of lead compounds that are being used to develop potent inhibitors.


Assuntos
Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Aspartato-Semialdeído Desidrogenase/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Streptococcus pneumoniae/enzimologia , Vibrio cholerae/enzimologia , Aspartato-Semialdeído Desidrogenase/metabolismo , Ácido Aspártico/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cólera/microbiologia , Cristalografia por Raios X , Humanos , Modelos Moleculares , Infecções Pneumocócicas/microbiologia , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismo
7.
Eur J Med Chem ; 86: 528-41, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25203782

RESUMO

Several largazole analogues with modified surface recognition cap groups were synthesized and their HDAC inhibitory activities were determined. The C7-epimer 12 caused negligible inhibition of HDAC activity, failed to induce global histone 3 (H3) acetylation in the HCT116 colorectal cancer cell line and demonstrated minimal effect on growth. Although previous studies have shown some degree of tolerance of structural changes at C7 position of largazole, these data show the negative effect of conformational change accompanying change of configuration at this position. Similarly, analogue 16a with D-1-naphthylmethyl side chain at C2 too had negligible inhibition of HDAC activity, failed to induce global histone 3 (H3) acetylation in the HCT116 colorectal cancer cell line and demonstrated minimal effect on growth. In contrast, the L-allyl analogue 16b and the L-1-naphthylmethyl analogue 16c were potent HDAC inhibitors, showing robust induction of global H3 acetylation and significant effect on cell growth. The data suggest that even bulky substituents are tolerated at this position, provided the stereochemistry at C2 is retained. With bulky substituents, inversion of configuration at C2 results in loss of inhibitory activity. The activity profiles of 16b and 16c on Class I HDAC1 vs Class II HDAC6 are similar to those of largazole and, taken together with x-ray crystallography information of HDAC8-largazole complex, may suggest that the C2 position of largazole is not a suitable target for structural optimization to achieve isoform selectivity. The results of these studies may guide the synthesis of more potent and selective HDAC inhibitors.


Assuntos
Depsipeptídeos/química , Depsipeptídeos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Depsipeptídeos/síntese química , Relação Dose-Resposta a Droga , Células HCT116 , Inibidores de Histona Desacetilases/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química
8.
Toxicol Appl Pharmacol ; 270(2): 87-96, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23632129

RESUMO

In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1-5 µM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5-5 µM) inhibited the constitutive expression of HDAC1 (0-30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ~220% with a concomitant decrease in HDAC5 [30-58%] expression in RA synovial fibroblasts. SAHA (5 µM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α+LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA.


Assuntos
Artrite Reumatoide/metabolismo , Depsipeptídeos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Molécula 1 de Adesão Intercelular/biossíntese , Membrana Sinovial/metabolismo , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Artrite Reumatoide/genética , Western Blotting , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Metaloproteinase 2 da Matriz/metabolismo , Proteína Oncogênica v-akt/metabolismo , RNA/química , RNA/genética , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Molécula 1 de Adesão de Célula Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Arch Biochem Biophys ; 536(1): 64-71, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23711747

RESUMO

S-adenosyl-l-methionine (AdoMet) synthetase catalyzes the production of AdoMet, the major biological methyl donor and source of methylene, amino, ribosyl, and aminopropyl groups in the metabolism of all known organism. In addition to these essential functions, AdoMet can also serve as the precursor for two different families of quorum sensing molecules that trigger virulence in Gram-negative human pathogenic bacteria. The enzyme responsible for AdoMet biosynthesis has been cloned, expressed and purified from several of these infectious bacteria. AdoMet synthetase (MAT) from Neisseria meningitidis shows similar kinetic parameters to the previously characterized Escherichia coli enzyme, while the Pseudomonas aeruginosa enzyme has a decreased catalytic efficiency for its MgATP substrate. In contrast, the more distantly related MAT from Campylobacter jejuni has an altered quaternary structure and possesses a higher catalytic turnover than the more closely related family members. Methionine analogs have been examined to delineate the substrate specificity of these enzyme forms, and several alternative substrates have been identified with the potential to block quorum sensing while still serving as precursors for essential methyl donation and radical generation reactions.


Assuntos
Campylobacter jejuni/enzimologia , Escherichia coli/enzimologia , Metionina Adenosiltransferase/metabolismo , Neisseria meningitidis/enzimologia , Pseudomonas aeruginosa/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Campylobacter jejuni/química , Campylobacter jejuni/genética , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Humanos , Cinética , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/isolamento & purificação , Dados de Sequência Molecular , Neisseria meningitidis/química , Neisseria meningitidis/genética , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
10.
J Med Chem ; 54(21): 7453-63, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21936551

RESUMO

The histone deacetylase inhibitor largazole 1 was synthesized by a convergent approach that involved several efficient and high yielding single pot multistep protocols. Initial attempts using tert-butyl as thiol protecting group proved problematic, and synthesis was accomplished by switching to the trityl protecting group. This synthetic protocol provides a convenient approach to many new largazole analogues. Three side chain analogues with multiple heteroatoms for chelation with Zn(2+) were synthesized, and their biological activities were evaluated. They were less potent than largazole 1 in growth inhibition of HCT116 colon carcinoma cell line and in inducing increases in global H3 acetylation. Largazole 1 and the three side chain analogues had no effect on HDAC6, as indicated by the lack of increased acetylation of α-tubulin.


Assuntos
Antineoplásicos/síntese química , Quelantes/síntese química , Depsipeptídeos/síntese química , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/metabolismo , Tiazóis/síntese química , Zinco/metabolismo , Acetilação , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Quelantes/química , Quelantes/farmacologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HeLa , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...