Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(3): fcae142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712318

RESUMO

Bilateral perisylvian polymicrogyria is the most common form of regional polymicrogyria within malformations of cortical development, constituting 20% of all malformations of cortical development. Bilateral perisylvian polymicrogyria is characterized by an excessive folding of the cerebral cortex and abnormal cortical layering. Notable clinical features include upper motoneuron dysfunction, dysarthria and asymmetric quadriparesis. Cognitive impairment and epilepsy are frequently observed. To identify genetic variants underlying bilateral perisylvian polymicrogyria in Finland, we examined 21 families using standard exome sequencing, complemented by optical genome mapping and/or deep exome sequencing. Pathogenic or likely pathogenic variants were identified in 5/21 (24%) of families, of which all were confirmed as de novo. These variants were identified in five genes, i.e. DDX23, NUS1, SCN3A, TUBA1A and TUBB2B, with NUS1 and DDX23 being associated with bilateral perisylvian polymicrogyria for the first time. In conclusion, our results confirm the previously reported genetic heterogeneity of bilateral perisylvian polymicrogyria and underscore the necessity of more advanced methods to elucidate the genetic background of bilateral perisylvian polymicrogyria.

2.
Am J Med Genet A ; 194(4): e63478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37975178

RESUMO

Bilateral perisylvian polymicrogyria (BPP) is a structural malformation of the cerebral cortex that can be caused by several genetic abnormalities. The most common clinical manifestations of BPP include intellectual disability and epilepsy. Cytoplasmic FMRP-interacting protein 2 (CYFIP2) is a protein that interacts with the fragile X mental retardation protein (FMRP). CYFIP2 variants can cause various brain structural abnormalities with the most common clinical manifestations of intellectual disability, epileptic encephalopathy and dysmorphic features. We present a girl with multiple disabilities and BPP caused by a heterozygous, novel, likely pathogenic variant (c.1651G>C: p.(Val551Leu) in the CYFIP2 gene. Our case report broadens the spectrum of genetic diversity associated with BPP by incorporating CYFIP2.


Assuntos
Anormalidades Múltiplas , Encefalopatias , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Polimicrogiria , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Polimicrogiria/genética , Polimicrogiria/complicações , Anormalidades Múltiplas/genética , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/complicações , Encefalopatias/complicações , Proteínas Adaptadoras de Transdução de Sinal/genética
3.
Eur J Hum Genet ; 31(11): 1270-1274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37684519

RESUMO

Polydactyly is the most common limb malformation that occurs in 1.6-10.6 per one thousand live births, with incidence varying with ancestry. The underlying gene has been identified for many of the ~100 syndromes that include polydactyly. While for the more common form, nonsydromic polydactyly, eleven candidate genes have been reported. We investigated the underlying genetic cause of autosomal recessive nonsyndromic postaxial polydactyly in four consanguineous Pakistani families. Some family members with postaxial polydactyly also present with syndactyly, camptodactyly, or clinodactyly. Analysis of the exome sequence data revealed two novel homozygous frameshift deletions in EFCAB7: [c.830delG;p.(Gly277Valfs*5)]; in three families and [c.1350_1351delGA;p.(Asn451Phefs*2)] in one family. Sanger sequencing confirmed that these variants segregated with postaxial polydactyly, i.e., family members with postaxial polydactyly were found to be homozygous while unaffected members were heterozygous or wild type. EFCAB7 displays expressions in the skeletal muscle and on the cellular level in cilia. IQCE-EFCAB7 and EVC-EVC2 are part of the heterotetramer EvC complex, which is a positive regulator of the Hedgehog (Hh) pathway, that plays a key role in limb formation. Depletion of either EFCAB7 or IQCE inhibits induction of Gli1, a direct Hh target gene. Variants in IQCE and GLI1 have been shown to cause nonsyndromic postaxial polydactyly, while variants in EVC and EVC2 underlie Ellis van Creveld and Weyers syndromes, which include postaxial polydactyly as a phenotype. This is the first report of the involvement of EFCAB7 in human disease etiology.


Assuntos
Deformidades Congênitas dos Membros , Polidactilia , Humanos , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco , Polidactilia/genética , Dedos/anormalidades
4.
Clin Genet ; 104(4): 499-501, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311648

RESUMO

A short report with two affected siblings from consanguineous family born with intellectual disability, motor disability, language deficit, and hearing impairment and found to carry biallelic nonsense variant in KPTN gene known to be associated with KPTN gene related syndrome.


Assuntos
Pessoas com Deficiência , Perda Auditiva , Deficiência Intelectual , Transtornos Motores , Humanos , Consanguinidade , Perda Auditiva/genética , Deficiência Intelectual/genética , Proteínas dos Microfilamentos/genética , Linhagem , Fenótipo , Síndrome
5.
Biomed Res Int ; 2023: 9993801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090188

RESUMO

Pathogenic variants in vacuolar protein sorting 13 homolog B (VPS13B) cause Cohen syndrome (CS), a clinically diverse neurodevelopmental disorder. We used whole exome and Sanger sequencing to identify disease-causing variants in a Pakistani family with intellectual disability, microcephaly, facial dysmorphism, neutropenia, truncal obesity, speech delay, motor delay, and insomnia. We identified a novel homozygous nonsense variant c.8841G > A: p.(W2947∗) in VPS13B (NM_017890.5) which segregated with the disease. Sleep disturbances are commonly seen in neurodevelopmental disorders and can exacerbate medical issues if left untreated. We demonstrate that individuals with Cohen syndrome may also be affected by sleep disturbances. In conclusion, we expand the genetic and phenotypic features of Cohen syndrome in the Pakistani population.


Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/patologia , Fenótipo , Linhagem , Obesidade/patologia , Proteínas de Transporte Vesicular/genética
6.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36355422

RESUMO

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Adulto , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Proteínas Qa-SNARE/genética , Audição/genética , Células Ciliadas Auditivas Externas
7.
BMC Med Genomics ; 15(1): 237, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357908

RESUMO

BACKGROUND: Childhood hearing impairment (HI) is genetically heterogeneous with many implicated genes, however, only a few of these genes are reported in African populations. METHODS: This study used exome and Sanger sequencing to resolve the possible genetic cause of non-syndromic HI in a Ghanaian family. RESULTS: We identified a novel variant c.3041G > A: p.(Gly1014Glu) in GREB1L (DFNA80) in the index case. The GREB1L: p.(Gly1014Glu) variant had a CADD score of 26.5 and was absent from human genomic databases such as TopMed and gnomAD. In silico homology protein modeling approaches displayed major structural differences between the wildtype and mutant proteins. Additionally, the variant was predicted to probably affect the secondary protein structure that may impact its function. Publicly available expression data shows a higher expression of Greb1L in the inner ear of mice during development and a reduced expression in adulthood, underscoring its importance in the development of the inner ear structures. CONCLUSION: This report on an African individual supports the association of GREB1L variant with non-syndromic HI and extended the evidence of the implication of GREB1L variants in HI in diverse populations.


Assuntos
Perda Auditiva , Adulto , Animais , Criança , Humanos , Camundongos , Exoma , Sequenciamento do Exoma , Gana , Perda Auditiva/genética , Mutação , Linhagem , Proteínas/genética
8.
Mol Genet Genomic Med ; 10(7): e1995, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698919

RESUMO

BACKGROUND: Branchio-otic syndrome (BO) is one of the most common types of syndromic hearing impairment (HI) with an incidence of 1/40,000 globally. It is an autosomal dominant disorder typically characterized by the coexistence of branchial cysts or fistulae, malformations of the external, middle, and inner ears with preauricular pits or tags and a variable degree of HI. Most cases of BO have been reported in populations of European ancestry. To date, only few cases have been reported in people from African descent. METHODS: After a careful clinical examination, a pure tone audiometry was performed. DNA was extracted from peripheral blood and whole exome, and Sanger sequencing were performed for genetic analysis. RESULTS: Eight individuals from a large non-consanguineous Malian family, with autosomal dominant inheritance were enrolled. The ages at diagnosis ranged from 8 to 54 years. A high phenotypic variability was noted among the affected individuals. Four patients presented with a post-lingual and mixed type of HI, one individual had conductive HI while three had normal hearing but presented other BO features namely branchial fistulae and preauricular sinus. Serum creatinine level and renal ultrasonography were normal in three affected individuals who performed them. Genetic testing identified a monoallelic pathogenic variant in EYA1 (c.1286A > G; p.Asp429Gly) segregating with BO syndrome in the family. CONCLUSION: This is the first genetically confirmed case of BO syndrome caused by EYA1 variant in the sub-Saharan African population, expanding the genetic spectrum of the condition.


Assuntos
Perda Auditiva , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatases , Adolescente , Adulto , Síndrome Brânquio-Otorrenal , Criança , Perda Auditiva/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Linhagem , Proteínas Tirosina Fosfatases/genética , Adulto Jovem
9.
Genes (Basel) ; 13(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35627139

RESUMO

Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant disorder with febrile or afebrile seizures that exhibits phenotypic variability. Only a few variants in SCN1A have been previously characterized for GEFS+, in Latin American populations where studies on the genetic and phenotypic spectrum of GEFS+ are scarce. We evaluated members in two multi-generational Colombian Paisa families whose affected members present with classic GEFS+. Exome and Sanger sequencing were used to detect the causal variants in these families. In each of these families, we identified variants in SCN1A causing GEFS+ with incomplete penetrance. In Family 047, we identified a heterozygous variant (c.3530C > G; p.(Pro1177Arg)) that segregates with GEFS+ in 15 affected individuals. In Family 167, we identified a previously unreported variant (c.725A > G; p.(Gln242Arg)) that segregates with the disease in a family with four affected members. Both variants are located in a cytoplasmic loop region in SCN1A and based on our findings the variants are classified as pathogenic and likely pathogenic, respectively. Our results expand the genotypic and phenotypic spectrum associated with SCN1A variants and will aid in improving molecular diagnostics and counseling in Latin American and other populations.


Assuntos
Epilepsia , Convulsões Febris , Colômbia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Linhagem , Convulsões Febris/complicações , Convulsões Febris/genética
10.
Genes (Basel) ; 13(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456468

RESUMO

Atypical Gaucher disease is caused by variants in the PSAP gene. Saposin C is one of four homologous proteins derived from sequential cleavage of the saposin precursor protein, prosaposin. It is an essential activator for glucocerebrosidase, which is deficient in Gaucher disease. Although atypical Gaucher disease due to deficiency of saposin C is rare, it exhibits vast phenotypic heterogeneity. Here, we report on a Pakistani family that exhibits features of Gaucher disease, i.e., prelingual profound sensorineural hearing impairment, vestibular dysfunction, hepatosplenomegaly, kyphosis, and thrombocytopenia. The family was investigated using exome and Sanger sequencing. A homozygous missense variant c.1076A>C: p.(Glu359Ala) in exon 10 of the PSAP gene was observed in all affected family members. In conclusion, we identified a new likely pathogenic missense variant in PSAP in a large consanguineous Pakistani family with atypical Gaucher disease. Gaucher disease due to a deficiency of saposin C has not been previously reported within the Pakistani population. Genetic screening of patients with the aforementioned phenotypes could ensure adequate follow-up and the prevention of further complications. Our finding expands the genetic and phenotypic spectrum of atypical Gaucher disease due to a saposin C deficiency.


Assuntos
Doença de Gaucher , Consanguinidade , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Humanos , Paquistão , Fenótipo , Saposinas/genética , Saposinas/metabolismo
11.
Commun Biol ; 5(1): 369, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440622

RESUMO

We investigated hearing impairment (HI) in 51 families from Ghana with at least two affected members that were negative for GJB2 pathogenic variants. DNA samples from 184 family members underwent whole-exome sequencing (WES). Variants were found in 14 known non-syndromic HI (NSHI) genes [26/51 (51.0%) families], five genes that can underlie either syndromic HI or NSHI [13/51 (25.5%)], and one syndromic HI gene [1/51 (2.0%)]. Variants in CDH23 and MYO15A contributed the most to HI [31.4% (16/51 families)]. For DSPP, an autosomal recessive mode of inheritance was detected. Post-lingual expression was observed for a family segregating a MARVELD2 variant. To our knowledge, seven novel candidate HI genes were identified (13.7%), with six associated with NSHI (INPP4B, CCDC141, MYO19, DNAH11, POTEI, and SOX9); and one (PAX8) with Waardenburg syndrome. MYO19 and DNAH11 were replicated in unrelated Ghanaian probands. Six of the novel genes were expressed in mouse inner ear. It is known that Pax8-/- mice do not respond to sound, and depletion of Sox9 resulted in defective vestibular structures and abnormal utricle development. Most variants (48/60; 80.0%) have not previously been associated with HI. Identifying seven candidate genes in this study emphasizes the potential of novel HI genes discovery in Africa.


Assuntos
Exoma , Perda Auditiva , Animais , Caderinas/genética , Gana , Perda Auditiva/genética , Humanos , Proteína 2 com Domínio MARVEL/genética , Camundongos , Mutação , Miosinas , Sequenciamento do Exoma/métodos
12.
Mol Genet Genomic Med ; 10(3): e1866, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150090

RESUMO

BACKGROUND: The genetic architecture of hearing impairment in Finland is largely unknown. Here, we investigated two Finnish families with autosomal recessive nonsyndromic symmetrical moderate-to-severe hearing impairment. METHODS: Exome and custom capture next-generation sequencing were used to detect the underlying cause of hearing impairment. RESULTS: In both Finnish families, we identified a homozygous pathogenic splice site variant c.637+1G>T in CAPB2 that is known to cause autosomal recessive nonsyndromic hearing impairment. Four CABP2 variants have been reported to underlie autosomal recessive nonsyndromic hearing impairment in eight families from Iran, Turkey, Pakistan, Italy, and Denmark. Of these variants, the pathogenic splice site variant c.637+1G>T is the most prevalent. The c.637+1G>T variant is enriched in the Finnish population, which has undergone multiple bottlenecks that can lead to the higher frequency of certain variants including those involved in disease. CONCLUSION: We report two Finnish families with hearing impairment due to the CABP2 splice site variant c.637+1G>T.


Assuntos
Surdez , Perda Auditiva , Surdez/genética , Finlândia , Genes Recessivos , Perda Auditiva/genética , Humanos
13.
Eur J Hum Genet ; 30(1): 22-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34135477

RESUMO

Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.


Assuntos
Proteína ADAMTS1/genética , Carboxiliases/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Animais , Carboxiliases/química , Carboxiliases/metabolismo , Feminino , Genes Recessivos , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Linhagem , Domínios Proteicos
14.
Eur J Hum Genet ; 30(1): 42-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837038

RESUMO

Although variant alleles of hundreds of genes are associated with sensorineural deafness in children, the genes and alleles involved remain largely unknown in the Sub-Saharan regions of Africa. We ascertained 56 small families mainly of Yoruba ethno-lingual ancestry in or near Ibadan, Nigeria, that had at least one individual with nonsyndromic, severe-to-profound, prelingual-onset, bilateral hearing loss not attributed to nongenetic factors. We performed a combination of exome and Sanger sequencing analyses to evaluate both nuclear and mitochondrial genomes. No biallelic pathogenic variants were identified in GJB2, a common cause of deafness in many populations. Potential causative variants were identified in genes associated with nonsyndromic hearing loss (CIB2, COL11A1, ILDR1, MYO15A, TMPRSS3, and WFS1), nonsyndromic hearing loss or Usher syndrome (CDH23, MYO7A, PCDH15, and USH2A), and other syndromic forms of hearing loss (CHD7, OPA1, and SPTLC1). Several rare mitochondrial variants, including m.1555A>G, were detected in the gene MT-RNR1 but not in control Yoruba samples. Overall, 20 (33%) of 60 independent cases of hearing loss in this cohort of families were associated with likely causal variants in genes reported to underlie deafness in other populations. None of these likely causal variants were present in more than one family, most were detected as compound heterozygotes, and 77% had not been previously associated with hearing loss. These results indicate an unusually high level of genetic heterogeneity of hearing loss in Ibadan, Nigeria and point to challenges for molecular genetic screening, counseling, and early intervention in this population.


Assuntos
Heterogeneidade Genética , Perda Auditiva Neurossensorial/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Frequência do Gene , Loci Gênicos , Heterozigoto , Humanos , Povos Indígenas/genética , Masculino , Nigéria
15.
Genes (Basel) ; 12(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34828371

RESUMO

Hearing impairment (HI) is a sensory disorder with a prevalence of 0.0055 live births in South Africa. DNA samples from a South African family presenting with progressive, autosomal dominant non-syndromic HI were subjected to whole-exome sequencing, and a novel monoallelic variant in REST [c.1244GC; p.(C415S)], was identified as the putative causative variant. The co-segregation of the variant was confirmed with Sanger Sequencing. The variant is absent from databases, 103 healthy South African controls, and 52 South African probands with isolated HI. In silico analysis indicates that the p.C415S variant in REST substitutes a conserved cysteine and results in changes to the surrounding secondary structure and the disulphide bonds, culminating in alteration of the tertiary structure of REST. Localization studies using ectopically expressed GFP-tagged Wild type (WT) and mutant REST in HEK-293 cells show that WT REST localizes exclusively to the nucleus; however, the mutant protein localizes throughout the cell. Additionally, mutant REST has an impaired ability to repress its known target AF1q. The data demonstrates that the identified mutation compromises the function of REST and support its implication in HI. This study is the second report, worldwide, to implicate REST in HI and suggests that it should be included in diagnostic HI panels.


Assuntos
Substituição de Aminoácidos , Sequenciamento do Exoma/métodos , Perda Auditiva Neurossensorial/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Linhagem , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , África do Sul
16.
J Hum Genet ; 66(12): 1169-1175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34226616

RESUMO

Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear. The genotypic spectrum of SLC12A2 was expanded and the involvement of SLC12A2 in ADNSHI was confirmed. These results also demonstrate the role that SLC12A2 plays in ADNSHI in diverse populations including sub-Saharan Africans.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Mutação , Membro 2 da Família 12 de Carreador de Soluto/genética , Alelos , Sequência de Aminoácidos , Feminino , Genótipo , Humanos , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Análise de Sequência de DNA , Membro 2 da Família 12 de Carreador de Soluto/química , Relação Estrutura-Atividade , Sequenciamento do Exoma
18.
J Hum Genet ; 66(10): 1009-1018, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33879837

RESUMO

BACKGROUND: Wolfram syndrome (WFS) is characterized by deafness, diabetes mellitus, and diabetes insipidus along with optic atrophy. WFS has an autosomal recessive mode of inheritance and is due to variants in WFS1 and CISD2. METHODS: We evaluated the underlying molecular etiology of three affected members of a consanguineous family with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities via exome sequencing approach. We correlated clinical and imaging data with the genetic findings and their associated phenotypes. RESULTS: We identified a homozygous missense variant p.(Asn1097Lys) in CDK13, a gene previously associated with autosomal dominant congenital heart defects, dysmorphic facial features, clinodactyly, gastrointestinal tract abnormalities, intellectual developmental disorder, and seizures with variable phenotypic features. CONCLUSION: We report a homozygous variant in CDK13 and suggest that this gene causes an autosomal recessive disorder with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities.


Assuntos
Proteína Quinase CDC2/genética , Surdez/genética , Predisposição Genética para Doença , Atrofia Óptica/genética , Síndrome de Wolfram/genética , Adolescente , Adulto , Doença da Válvula Aórtica Bicúspide/genética , Doença da Válvula Aórtica Bicúspide/patologia , Criança , Pré-Escolar , Consanguinidade , Surdez/complicações , Surdez/patologia , Diabetes Mellitus/genética , Feminino , Trato Gastrointestinal/anormalidades , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Perda Auditiva , Homozigoto , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto/genética , Atrofia Óptica/complicações , Atrofia Óptica/patologia , Síndrome de Wolfram/complicações , Síndrome de Wolfram/epidemiologia , Síndrome de Wolfram/patologia , Adulto Jovem
19.
Exp Biol Med (Maywood) ; 246(13): 1524-1532, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33715530

RESUMO

Approximately half of congenital hearing impairment cases are inherited, with non-syndromic hearing impairment (NSHI) being the most frequent clinical entity of genetic hearing impairment cases. A family from Cameroon with NSHI was investigated by performing exome sequencing using DNA samples obtained from three family members, followed by direct Sanger sequencing in additional family members and controls participants. We identified an autosomal dominantly inherited novel missense variant [NM_001174116.2:c.918G>T; p.(Q306H)] in DMXL2 gene (MIM:612186) that co-segregates with mild to profound non-syndromic sensorineural hearing impairment . The p.(Q306H) variant which substitutes a highly conserved glutamine residue is predicted deleterious by various bioinformatics tools and is absent from several genome databases. This variant was also neither found in 121 apparently healthy controls without a family history of hearing impairment , nor 112 sporadic NSHI cases from Cameroon. There is one previous report of a large Han Chinese NSHI family that segregates a missense variant in DMXL2. The present study provides additional evidence that DMXL2 is involved in hearing impairment etiology, and we suggest DMXL2 should be considered in diagnostic hearing impairment panels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Perda Auditiva Neurossensorial/genética , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adulto , Criança , Feminino , Genes Dominantes , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Linhagem
20.
J Med Genet ; 58(11): 743-751, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978268

RESUMO

OBJECTIVE: To investigate the diagnostic value of implementing a stepwise genetic testing strategy (SGTS) in genetically unsolved cases with dystrophinopathies. METHODS: After routine genetic testing in 872 male patients with highly suspected dystrophinopathies, we identified 715 patients with a pathogenic DMD variant. Of the 157 patients who had no pathogenic DMD variants and underwent a muscle biopsy, 142 patients were confirmed to have other myopathies, and 15 suspected dystrophinopathies remained genetically undiagnosed. These 15 patients underwent a more comprehensive evaluation as part of the SGTS pipeline, which included the stepwise analysis of dystrophin mRNA, short-read whole-gene DMD sequencing, long-read whole-gene DMD sequencing and in silico bioinformatic analyses. RESULTS: SGTS successfully yielded a molecular diagnosis of dystrophinopathy in 11 of the 15 genetically unsolved cases. We identified 8 intronic and 2 complex structural variants (SVs) leading to aberrant splicing in 10 of 11 patients, of which 9 variants were novel. In one case, a molecular defect was detected on mRNA and protein level only. Aberrant splicing mechanisms included 6 pseudoexon inclusions and 4 alterations of splice sites and splicing regulatory elements. We showed for the first time the exonisation of a MER48 element as a novel pathogenic mechanism in dystrophinopathies. CONCLUSION: Our study highlights the high diagnostic utility of implementing a SGTS pipeline in dystrophinopathies with intronic variants and complex SVs.


Assuntos
Distrofina/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Adolescente , Biópsia , Criança , Pré-Escolar , Éxons , Testes Genéticos/métodos , Humanos , Íntrons , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...