Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 18(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36720161

RESUMO

The goal of this study is to fabricate biocompatible and minimally invasive bone tissue engineering scaffolds that allowin situphotocuring and further investigate the effect on the mechanical properties of the scaffold due to the prevailing conditions around defect sites, such as the shift in pH from the physiological environment and swelling due to accumulation of fluids during inflammation. A novel approach of incorporating a general full factorial design of experiment (DOE) model to study the effect of the local environment of the tissue defect on the mechanical properties of these injectable and photocurable scaffolds has been formulated. Moreover, the cross-interaction between factors, such as pH and immersion time, was studied as an effect on the response variable. This study encompasses the fabrication and uniaxial mechanical testing of polyethylene glycol dimethacrylate (PEGDMA) scaffolds for injectable tissue engineering applications, along with the loss in weight of the scaffolds over 72 h in a varying pH environment that mimicsin vivoconditions around a defect. The DOE model was constructed with three factors: the combination of PEGDMA and nano-hydroxyapatite referred to as biopolymer blend, the pH of the buffer solution used for immersing the scaffolds, and the immersion time of the scaffolds in the buffer solution. The response variables recorded were compressive modulus, compressive strength, and the weight loss of the scaffolds over 72 h of immersion in phosphate-buffered saline at respective pH. The statistical model analysis provided adequate information in explaining a strong interaction of the factors on the response variables. Further, it revealed a significant cross-interaction between the factors. The factors such as the biopolymer blend and pH of the buffer solution significantly affected the response variables, compressive modulus and strength. At the same time, the immersion time had a strong effect on the loss in weight from the scaffolds over 72 h of soaking in the buffer solution. The biocompatibility study done using a set of fluorescent dyes for these tissue scaffolds highlighted an enhancement in the pre-osteoblasts (OB-6) cell attachment over time up to day 14. The representative fluorescent images revealed an increase in cell attachment activity over time. This study has opened a new horizon in optimizing the factors represented in the DOE model for tunable PEGDMA-based injectable scaffold systems with enhanced bioactivity.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Força Compressiva , Porosidade
2.
Colloids Surf B Biointerfaces ; 208: 112094, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34500203

RESUMO

Porous chitosan (CS) particles were fabricated using a novel two-step technique that employed a porogen leaching phase followed by lyophilization or freeze-drying. Poly(ethylene glycol) (PEG) was mixed as a porogen in two different quantities with the CS solution before particle synthesis via coacervation. After the PEG leached out into deionized (DI) water at an elevated constant temperature, the final freeze-dried CS particles revealed surface features that resembled pore pockets. A three-dimensional (3D) culture of murine osteoblast cell line (OB-6) was seeded on these particles to analyze the effect of the porous structure on the cell activity, as compared to a control group with no added porogen. The results highlighted an enhancement in cell adhesion and proliferation on the two porous sample groups. A Raman spectroscopy-based label-free technique for live cell biomarker analysis was applied using multivariate spectral analysis. Results of the spectral analysis in the molecular fingerprint region corresponding to the Raman shift between 900 cm-1 and 1700 cm-1inferred inter-group variations. The bands at 1005 cm-1 and 1375 cm-1 were assigned to the live cell biomarkers phenylalanine and glycosaminoglycan, respectively, and were assessed during the multivariate spectral analysis. The corresponding score plot and loading information generated from the Principal Component Analysis (PCA) of the Raman spectrum at day 7 and day 14, pointed at inter-group spectral variations related to cell adhesion and proliferation between the two porous CS particle groups and the control.


Assuntos
Quitosana , Animais , Adesão Celular , Liofilização , Camundongos , Porosidade , Alicerces Teciduais
3.
Mater Sci Eng C Mater Biol Appl ; 127: 112252, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225891

RESUMO

Bone morphogenetic proteins (BMPs) are well known as enhancers and facilitators of osteogenesis during bone regeneration. The use of recombinant BMP-2 (rhBMP-2) in bone defect healing has drawbacks, which has driven the scouting for alternatives, such as recombinant BMP-9 (rhBMP-9), to provide comparable new bone formation. However, the dosage of rhBMP-9 is quintessential for the facilitation of adequate bone defect healing. Therefore, this study has been designed to evaluate the optimal dosage of BMP-9 by comparing the bone defect healing induced by rhBMP-9 over rhBMP-2. The chitosan (CS) microparticles (MPs), coated with BMPs, were embedded in a thermoresponsive methylcellulose (MC) and calcium alginate (Alg) based injectable delivery system containing a dosage of either 0.5 µg or 1.5 µg of the respective rhBMP per bone defect. A 5 mm critical-sized cranial defect rat model has been used in this study, and bone tissues were harvested at eight weeks post-surgery. The standard tools for comparing the new bone regeneration included micro computerized tomography (micro-CT) and histological analysis. A novel perspective of analyzing the new bone quality and crystallinity was employed by using Raman spectroscopy, along with its elastic modulus quantified through Atomic Force Microscopy (AFM). Results showed that the rhBMP-9 administered at a dosage of 1.5 µg per bone defect, using this delivery system, can adequately facilitate the bone void filling with ample new bone mineralization and crystallinity as compared to rhBMP-2, thus approving the hypothesis for a viable rhBMP-2 alternative.


Assuntos
Proteína Morfogenética Óssea 2 , Fator 2 de Diferenciação de Crescimento , Animais , Proteínas Morfogenéticas Ósseas , Regeneração Óssea , Calcificação Fisiológica , Fator 2 de Diferenciação de Crescimento/farmacologia , Osteogênese , Ratos , Proteínas Recombinantes , Fator de Crescimento Transformador beta
4.
Mater Sci Eng C Mater Biol Appl ; 120: 111748, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545890

RESUMO

Bone regeneration using bioactive molecules and biocompatible materials is growing steadily with the advent of the new findings in cellular signaling. Bone Morphogenetic Protein (BMP)-9 is a considerably recent discovery from the BMP family that delivers numerous benefits in osteogenesis. The Smad cellular signaling pathway triggered by BMPs is often inhibited by Noggin. However, BMP-9 is resistant to Noggin, thus, facilitating a more robust cellular differentiation of osteoprogenitor cells into preosteoblasts and osteoblasts. This review encompasses a general understanding of the Smad signaling pathway activated by the BMP-9 ligand molecule with its specific receptors. The robust osteogenic cellular differentiation cue provided by BMP-9 has been reviewed from a bone regeneration perspective with several in vitro as well as in vivo studies reporting promising results for future research. The effect of the biomaterial, chosen in such studies as the scaffold or carrier matrix, on the activity of BMP-9 and subsequent bone regeneration has been highlighted in this review. The non-viral delivery technique for BMP-9 induced bone regeneration is a safer alternative to its viral counterpart. The recent advances in non-viral BMP-9 delivery have also highlighted the efficacy of the protein molecule at a low dosage. This opens a new horizon as a more efficient and safer alternative to BMP-2, which was prevalent among clinical trials; however, BMP-2 applications have reported its downsides during bone defect healing such as cystic bone formation.


Assuntos
Fator 2 de Diferenciação de Crescimento , Osteogênese , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas , Regeneração Óssea , Diferenciação Celular , Sinais (Psicologia) , Osteoblastos
5.
Mater Sci Eng C Mater Biol Appl ; 110: 110698, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204012

RESUMO

The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Nanocompostos/química , Polímeros/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Humanos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...