Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Clin Proteomics ; 10(1): 19, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24295388

RESUMO

BACKGROUND: Potential biomarkers to aid diagnosis and therapy need to be identified for Amyotrophic Lateral Sclerosis, a progressive motor neuronal degenerative disorder. The present study was designed to identify the factor(s) which are differentially expressed in the cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (SALS; ALS-CSF), and could be associated with the pathogenesis of this disease. RESULTS: Quantitative mass spectrometry of ALS-CSF and control-CSF (from orthopaedic surgical patients undergoing spinal anaesthesia) samples showed upregulation of 31 proteins in the ALS-CSF, amongst which a ten-fold increase in the levels of chitotriosidase-1 (CHIT-1) was seen compared to the controls. A seventeen-fold increase in the CHIT-1 levels was detected by ELISA, while a ten-fold elevated enzyme activity was also observed. Both these results confirmed the finding of LC-MS/MS. CHIT-1 was found to be expressed by the Iba-1 immunopositive microglia. CONCLUSION: Elevated CHIT-1 levels in the ALS-CSF suggest a definitive role for the enzyme in the disease pathogenesis. Its synthesis and release from microglia into the CSF may be an aligned event of neurodegeneration. Thus, high levels of CHIT-1 signify enhanced microglial activity which may exacerbate the process of neurodegeneration. In view of the multifold increase observed in ALS-CSF, it can serve as a potential CSF biomarker for the diagnosis of SALS.

3.
Antioxid Redox Signal ; 7(7-8): 900-10, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998245

RESUMO

Oxidative stress and mitochondrial dysfunction signify two important biochemical events associated with the loss of dopaminergic neurons in Parkinson's disease (PD). Studies using in vitro and in vivo PD models and in affected tissues from the disease itself have demonstrated a selective inhibition of mitochondrial complex I activity that appears to affect normal mitochondrial physiology leading to neuronal cell death. Earlier experiments from our laboratory have demonstrated that induced depletion of glutathione (GSH + GSSG) in cultured dopaminergic cells resulted in increased oxidative stress and a decrease in mitochondrial function. Furthermore, this dysfunction was linked to a selective decrease in mitochondrial complex I activity that appears to be due to oxidation of this complex. Glutathione depletion is the earliest detectable biochemical event during PD progression and occurs prior to complex I inhibition. Recent observations have also indicated that oxidative damage to complex I via naturally occurring free radicals such as peroxynitrite leads to modification of tyrosine and/or cysteine residues resulting in complex I inhibition. Using the sucrose gradient method, we detected in complex I-enriched fractions from a glutathione-depleted dopaminergic cell line two bands corresponding to approximately 25-kDa and approximately 30-kDa polypeptides that demonstrate anti-nitrotyrosine immunoreactivity, suggesting the possible involvement of protein nitration by peroxynitrite in glutathione depletion-mediated complex I inhibition.


Assuntos
Dopamina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Glutationa/deficiência , Mesencéfalo/citologia , Nitratos/metabolismo , Doença de Parkinson/metabolismo , Tirosina/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular , Complexo I de Transporte de Elétrons/isolamento & purificação , Glutationa/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ácido Peroxinitroso/metabolismo , Subunidades Proteicas/metabolismo , Ratos
5.
Biochem Pharmacol ; 64(5-6): 1037-48, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12213603

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease involving neurodegeneration of dopaminergic neurons of the substantia nigra (SN), a part of the midbrain. Oxidative stress has been implicated to play a major role in the neuronal cell death associated with PD. Importantly, there is a drastic depletion in cytoplasmic levels of the thiol tripeptide glutathione within the SN of PD patients. Glutathione (GSH) exhibits several functions in the brain chiefly acting as an antioxidant and a redox regulator. GSH depletion has been shown to affect mitochondrial function probably via selective inhibition of mitochondrial complex I activity. An important biochemical feature of neurodegeneration during PD is the presence of abnormal protein aggregates present as intracytoplasmic inclusions called Lewy bodies. Oxidative damage via GSH depletion might also accelerate the build-up of defective proteins leading to cell death of SN dopaminergic neurons by impairing the ubiquitin-proteasome pathway of protein degradation. Replenishment of normal glutathione levels within the brain may hold an important key to therapeutics for PD. Several reports have suggested that iron accumulation in the SN patients might also contribute to oxidative stress during PD.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Glutationa/uso terapêutico , Humanos , Estresse Oxidativo/fisiologia , Doença de Parkinson/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA