Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014291

RESUMO

Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called secretory component (SC). The pIgR has five Ig-like domains (D1-D5) that undergo a conformational change upon binding dIgA, ultimately contacting four IgA heavy chains and the JC in SIgA. Here we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding whereas residues that stabilize the D1-D3 interface are likely to promote the conformation change and stabilize the final SIgA structure. Additionally, we find that the three C-terminal residues of JC play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together results inform new models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.

2.
bioRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986930

RESUMO

Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...