Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pathogens ; 12(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003792

RESUMO

The continuous evolution of the SARS-CoV-2 virus led to constant developments and efforts in understanding the significance and impacts of SARS-CoV-2 variants on human health. Our study aimed to determine the accumulation of genetic mutations and associated lung pathologies in male and female hamsters infected with the ancestral Wuhan strain of SARS-CoV-2. The present study showed no significant difference in the viral load between male and female hamsters and peak infection was found to be on day four post infection in both sexes of the animals. Live virus particles were detected up to 5 days post infection (dpi) through the TCID-50 assay, while qRT-PCR could detect viral RNA up to 14 dpi from all the infected animals. Further, the determination of the neutralizing antibody titer showed the onset of the humoral immune response as early as 4 dpi in both sexes against SARS-CoV-2, and a significant cross-protection against the delta variant of SARS-CoV-2 was observed. Histopathology showed edema, inflammation, inflammatory cell infiltration, necrosis, and degeneration of alveolar and bronchial epithelium cells from 3 dpi to 14 dpi in both sexes. Furthermore, next-generation sequencing (NGS) showed up to 10 single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 (ancestral Wuhan strain) genome isolated from both male and female hamsters. The mutation observed at the 23014 position (Glu484Asp) in the SARS-CoV-2 genome isolated from both sexes of the hamsters plays a significant role in the antiviral efficacy of small molecules, vaccines, and the Mabs-targeting S protein. The present study shows that either of the genders can be used in the pre-clinical efficacy of antiviral agents against SARS-CoV-2 in hamsters. However, considering the major mutation in the S protein, the understanding of the genetic mutation in SARS-CoV-2 after passing through hamsters is crucial in deciding the efficacy of the antiviral agents targeting the S protein. Importance: Our study findings indicate the accumulation of genomic mutations in SARS-CoV-2 after passing through the Syrian golden hamsters. Understanding the genomic mutations showed that either of the hamster genders can be used in the pre-clinical efficacy of antiviral agents and vaccines.

2.
Vaccines (Basel) ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851133

RESUMO

Children are at risk of infection from severe acute respiratory syndrome coronavirus-2 virus (SARS-CoV-2) resulting in coronavirus disease (COVID-19) and its more severe forms. New-born infants are expected to receive short-term protection from passively transferred maternal antibodies from their mothers who are immunized with first-generation COVID-19 vaccines. Passively transferred antibodies are expected to wane within first 6 months of infant's life, leaving them vulnerable to COVID-19. Live attenuated vaccines, unlike inactivated or viral-protein-based vaccines, offer broader immune engagement. Given effectiveness of live attenuated vaccines in controlling infectious diseases such as mumps, measles and rubella, we undertook development of a live attenuated COVID-19 vaccine with an aim to vaccinate children beyond 6 months of age. An attenuated vaccine candidate (dCoV), engineered to express sub-optimal codons and deleted polybasic furin cleavage sites in the spike protein of the SARS-CoV-2 WA/1 strain, was developed and tested in hamsters. Hamsters immunized with dCoV via intranasal or intramuscular routes induced high levels of neutralizing antibodies and exhibited complete protection against the SARS-CoV-2 wild-type isolates, i.e., the Wuhan-like (USA-WA1/2020) and Delta variants (B.1.617.2) in a challenge study. In addition, the dCoV formulated with the marketed measles-rubella (MR) vaccine, designated as MR-dCoV, administered to hamsters via intramuscular route, also protected against both SARS-CoV-2 challenges, and dCoV did not interfere with the MR vaccine-mediated immune response. The safety and efficacy of the dCoV and the MR-dCoV against both variants of SARS-CoV-2 opens the possibility of early immunization in children without an additional injection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-501940

RESUMO

SARS-CoV2 entry is mediated by binding of viral spike-protein(S) to the transmembrane Angiotensin-Converting Enzyme-2 (ACE2) of the host cell. Thus, to prevent transmission of disease, strategies to abrogate the interaction are important. However, ACE2 cannot be blocked since its normal function is to convert the Angiotensin II peptide to Angiotensin(1-7) to reduce hypertension. This work reports a recombinant cell line secreting soluble ACE2-ectopic domain (MFcS2), modified to increase binding and production efficacy and fused to human immunoglobulin-Fc. While maintaining its enzymatic activity, the molecule trapped and neutralized SARS CoV2 virus in vitro with an IC50 of 64 nM. In vivo, with no pathology in the vital organs, it inhibited the viral load in lungs in SARS-CoV2 infected Golden-Syrian-hamster. The Intravenous pharmacokinetic profiling of MFcS2 in hamster at a dose of 5 mg/Kg presented a maximum serum concentration of 23.45 {micro}g/mL with a half-life of 29.5 hrs. These results suggest that MFcS2 could be used as an effective decoy based therapeutic strategy to treat COVID19. This work also reports usage of a novel oral-cancer cell line as in vitro model of SARS-Cov2 infection, validated by over expressing viral-defence pathways upon RNA-seq analysis and over-expression of ACE2 and TMPRSS upon growth in hyperglycaemic condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...