Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 350: 141094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171401

RESUMO

Utilizing semiconductors for photocatalytic processes in water bodies as an approach to environmental remediation has gained considerable attention. Theoretical band position calculations revealed a type-II step-scheme charge flow mechanism for ZnCr2O4/g-C3N4 (ZCr/gCN), emphasizing effective heterojunction formation due to synergies between the materials. A composite of agglomerated nanoparticle ZnCr2O4 (Zinc chromium oxide - ZCr)/g-C3N4 (graphitic carbon nitride - gCN) nanosheets was synthesized using the ultrasonication and leveraging the heterojunction to enhance degradation efficiency and active sites participation. The synthesized sample was characterized by XRD, XPS, FTIR, BET, HRSEM, EDX, HRTEM, EIS PL, and UV-visible spectroscopy. XRD analysis confirmed the successful formation of pure ZnCr2O4, g-C3N4 (gCN), and their composite without any secondary phases. Optical investigations demonstrated a red shift (444-470 nm) in UV-visible spectra as ZnCr2O4 content increased. Morphological assessment via HRSEM unveiled agglomerated nanoparticle and nanosheet structures. FTIR analysis indicated the presence of gCN with the tri-s-triazine breathing mode at 807 cm-1, and the identification of octahedral Zn-O (598.11 cm-1) and tetrahedral Cr-O (447.01 cm-1) metal bonds within the spinel structure of ZnCr2O4. A Surface area of 134.162 m2/g was noticed with a microporous structure of pore radius 1.484 nm. Notably, the 15% ZCr/gCN composite achieved a remarkable 93.94 % (Rhodamine B-RhB) and 74.36 % (Ciprofloxacin - CIP) within 100 and 120 min, surpassing the performance of pure gCN. Improved degradation was attributed to higher charge separation (photo-excited electrons and holes), reducing charge recombination, as supported by photoluminescence and photoelectrochemical analyses. The presence of active species like superoxide during degradation was confirmed through a scavenger test. The stability analysis confirms the sample's stable nature (without secondary phase formation) after degradation. This work underscores the potential of ZnCr2O4 based metal-free compounds intended for effective environmental remediation.


Assuntos
Cromo , Recuperação e Remediação Ambiental , Rodaminas , Ciprofloxacina , Elétrons
2.
Chemosphere ; 284: 131280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34217926

RESUMO

3D-particulate and 1D-fiber structures of multiferroic bismuth ferrite (BiFeO3/BFO) and their composites with 2D-graphene oxide (GO) have been developed to exploit the different scheme of interfacial engineering as 3D/2D and 1D/2D systems. Particulates and fibers of BFO were developed via sol-gel and electrospinning fabrication approaches respectively and their integration with GO was performed via the ultrasonic-assisted chemical reduction process. The crystalline and phase formation of BiFeO3 and GO was confirmed from the XRD patterns obtained. The electron microscopic images revealed the characteristic integration of 3D particulates (with average size of 100 nm) and 1D fibers (with diameter of ~150 nm and few µm length) onto the 2D GO layers (thickness of ~27 nm). XPS analysis revealed that the BFO nanostructures have been integrated onto the GO through chemisorptions process, where it indicated that the ultrasonic process engineers the interface through the chemical modification of the surface of these 3D/2D and 1D/2D nanostructures. The photophysical studies such as the impedance and photocurrent measurements showed that the charge separation and recombination resistance is significantly enhanced in the system, which can directly be attributed to the effective interfacial engineering in the developed hetero-morphological composites. The degradation studies against a model pollutant Rhodamine B revealed that the developed nanocomposites exhibit superior photocatalytic activity via the effective generation of OH radicals as confirmed by the radical analysis studies (100% degradation in 150 and 90 min for 15% GO/BFO particulate and fiber composites, respectively). The developed system also demonstrated excellent photocatalytic recyclability, indicated their enhanced stability.


Assuntos
Bismuto , Nanocompostos , Catálise , Compostos Férricos , Grafite , Luz Solar
3.
Nanoscale ; 11(48): 23503, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793598

RESUMO

Correction for 'Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi1-xDyxFeO3 particulate and fiber nanostructures' by M. Sakar et al., Nanoscale, 2015, 7, 10667-10679.

4.
Nanoscale ; 8(2): 1147-60, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26667276

RESUMO

We report the magnetic and visible light driven photocatalytic properties of scandium (Sc) substituted bismuth ferrite (BSFO) particulate and fiber nanostructures. An increasing concentration of Sc was found to reduce the crystallite size, particle size and band gap energy of the BSFO nanostructures, which was evident from X-ray diffraction, field emission scanning electron microscopy and UV-Visible diffuse reflectance spectroscopy analysis respectively. The temperature dependent magnetic studies carried out using a SQUID magnetometer suggested that the origin of the magnetic properties in the pure BFO system could be the emergence of an antiferromagnetic-core/ferromagnetic-shell like structure, in contrast to the modified spin canted structures in the case of the BSFO nanostructures. The observed photocatalytic efficiency was attributed to the enhanced band bending process and recombination resistance in the BSFO nanostructures. For a comparative study, the photocatalytic activities of some selected compositions were also investigated under simulated solar light along with natural solar light.

5.
Nanoscale ; 7(24): 10667-79, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26029882

RESUMO

The manifestation of substitution and dimension induced modifications in the magnetic origin and photocatalytic properties of Dy substituted bismuth ferrite (BDFOx) particulate and fiber nanostructures are reported herein. A gradual transformation from rhombohedral to orthorhombic structure is observed in BFO with the increasing concentration of Dy. Substitution induced size reduction in particulate and fiber nanostructures is evident from the scanning and transmission electron micrographs. Energy band structures of both particulate and fiber nanostructures are considerably influenced by the Dy substitution, which is ascribed to the formation of new energy states underneath the conduction band of host BFO. Field dependent and temperature dependent magnetic studies reveal that the origin of magnetism in pure BFO systems is due to the antiferromagnetic-core/ferromagnetic-shell like structure. On the other hand, it gets completely switched into 'canted' spin structures due to the substitution induced suppression of cycloidal spins in BFO, which is found to be the origin of magnetism in BDFOx particulate and fiber nanostructures. The visible light driven photocatalytic activity of BDFOx nanostructures is found to be enhanced with increasing concentration of Dy. Substitution induced band gap modification, semiconductor band bending phenomenon mediated charge transfer and reduced recombination resistances are attributed to the observed photocatalytic enhancements in these nanostructures.

6.
Phys Chem Chem Phys ; 17(27): 17745-54, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26083677

RESUMO

This study demonstrates the fabrication of electrospun bismuth ferrite (BiFeO3/BFO) fiber mat and fibrous mesh nanostructures consisting of aligned and random fibers respectively. The formation of these one dimensional (1D) nanostructures was mediated by the drum and plate collectors in the electrospinning process that yielded aligned and random nanofibers of BFO respectively. The single phase and rhombohedral crystal structure of the fabricated 1D BFO nanostructures are confirmed through X-ray diffraction (XRD) studies. X-ray photoelectron spectroscopy (XPS) studies indicated that the fabricated fibers are stoichiometric BFO with native oxidation states +3. The surface texture and morphology are analyzed using the field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) techniques. The average size of fibers in mat and mesh nanostructures is found to be 200 nm and 150 nm respectively. The band gap energy of BFO mat and mesh deduced from their UV diffuse reflectance spectra (UV-DRS) was found to be 2.44 eV and 2.39 eV, respectively, which evidenced the improved visible light receptivity of BFO mesh compared to that of the mat. Magnetization studies using a super conducting quantum interference device (SQUID) magnetometer revealed the weak ferromagnetic properties of BFO mesh and mat nanostructures that could emerge due to the dimension induced suppression of cycloidal spin structures. The photocatalytic degradation properties of the fibrous mesh are found to be enhanced compared to that of the mat. This could be attributed to the reduced band gap energy and an improved semiconductor band-bending phenomenon in the mesh that favoured the transportation of excited charge carriers to the photocatalyst-dye interfaces and the production of more number of reactive species that lead to the effective degradation of the dye molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...