Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 87(12): 3124-3145, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37387435

RESUMO

Urban flooding has increased in response to impervious surface intensification, the loss of green areas, and high-intensity rainfall associated with climate change. Sustainable urban drainage systems (SUDS) are an appealing option for stormwater management; however, their hydraulic control capabilities have received little attention. We developed a comparative model-based approach with 24 scenarios to contrast the hydrologic and hydraulic response of a highly discretized (HD) 1D model and a coupled 1D-2D model, considering the impact of rainwater harvesting systems and tree pits. An additional scenario was modeled including attenuation storage tanks, green roofs, and pervious pavements. A heavily urbanized flood-prone catchment with severe land-use constraints in Bogotá, Colombia, was selected for analysis. The findings revealed that SUDS can contribute to reducing the number of flooded junctions, overloaded conduits' length, overloading time, nodal inundation depth, and waterlogging extent. Furthermore, the HD 1D model can reproduce the coupled 1D-2D model results in terms of hydrologic response and some hydraulic control indicators. Further research is needed for an accurate description of the internal hydraulic mechanisms of SUDS interacting with overland flow. The key findings of this study provide model-based evidence to support urban stormwater management decision-making in data-scarce environments.


Assuntos
Mudança Climática , Inundações , Colômbia , Hidrologia
2.
Sci Total Environ ; 650(Pt 1): 365-383, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30199682

RESUMO

Chamelia (catchment area = 1603 km2), a tributary of Mahakali, is a snow-fed watershed in Western Nepal. The watershed has 14 hydropower projects at various stages of development. This study simulated the current and future hydrological system of Chamelia using the Soil and Water Assessment Tool (SWAT). The model was calibrated for 2001-2007; validated for 2008-2013; and then applied to assess streamflow response to projected future climate scenarios. Multi-site calibration ensures that the model is capable of reproducing hydrological heterogeneity within the watershed. Current water balance above the Q120 hydrological station in the forms of precipitation, actual evapotranspiration (AET), and net water yield are 2469 mm, 381 mm and 1946 mm, respectively. Outputs of five Regional Climate Models (RCMs) under two representative concentration pathways (RCPs) for three future periods were considered for assessing climate change impacts. An ensemble of bias-corrected RCM projections showed that maximum temperature under RCP4.5 (RCP8.5) scenario for near-, mid-, and far-futures is projected to increase from the baseline by 0.9 °C (1.1 °C), 1.4 °C (2.1 °C), and 1.6 °C (3.4 °C), respectively. Minimum temperature for the same scenarios and future periods are projected to increase by 0.9 °C (1.2 °C), 1.6 °C (2.5 °C), and 2.0 °C (3.9 °C), respectively. Average annual precipitation under RCP4.5 (RCP8.5) scenario for near-, mid-, and far-futures are projected to increase by 10% (11%), 10% (15%), and 13% (15%), respectively. Based on the five RCMs considered, there is a high consensus for increase in temperature but higher uncertainty with respect to precipitations. Under these projected changes, average annual streamflow was simulated to increase gradually from the near to far future under both RCPs; for instance, by 8.2% in near-, 12.2% in mid-, and 15.0% in far-future under RCP4.5 scenarios. The results are useful for planning water infrastructure projects, in Chamelia and throughout the Mahakali basin, to ensure long-term sustainability under climate change.

3.
Geogr J ; 177(2): 160-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21922685

RESUMO

As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms ­ tribunals ­ that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.


Assuntos
Política , Saúde Pública , Alocação de Recursos , Rios , Abastecimento de Água , Tomada de Decisões , História do Século XX , História do Século XXI , Índia/etnologia , Formulação de Políticas , Saúde Pública/economia , Saúde Pública/educação , Saúde Pública/história , Saúde Pública/legislação & jurisprudência , Alocação de Recursos/economia , Alocação de Recursos/educação , Alocação de Recursos/história , Alocação de Recursos/legislação & jurisprudência , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/história , Gerenciamento de Resíduos/legislação & jurisprudência , Abastecimento de Água/economia , Abastecimento de Água/história , Abastecimento de Água/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA