Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 166: 107566, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37857135

RESUMO

The human voice is an essential communication tool, but various disorders and habits can disrupt it. Diagnosis of pathological and abnormal voices is very important. Conventional diagnosis of these voice pathologies can be invasive and costly. Voice pathology disorders can be effectively detected using Artificial Intelligence and computer-aided voice pathology classification tools. Previous studies focused primarily on binary classification, leaving limited attention to multi-class classification. This study proposes three different neural network architectures to investigate the feature characteristics of three voice pathologies-Hyperkinetic Dysphonia, Hypokinetic Dysphonia, Reflux Laryngitis, and healthy voices using multi-class classification and the Voice ICar fEDerico II (VOICED) dataset. The study proposes UNet++ autoencoder-based denoiser techniques for accurate feature extraction to overcome noisy data. The architectures include a Multi-Layer Perceptron (MLP) trained on structured feature sets, a Short-Time Fourier Transform (STFT) model, and a Mel-Frequency Cepstral Coefficients (MFCC) model. The MLP model on 143 features achieved 97.1% accuracy, while the STFT model showed similar performance with increased sensitivity of 99.8%. The MFCC model maintained 97.1% accuracy but with a smaller model size and improved accuracy on the Reflux Laryngitis class. The study identifies crucial features through saliency analysis and reveals that detecting voice abnormalities requires the identification of regions of inaudible high-pitch sounds. Additionally, the study highlights the challenges posed by limited and disjointed pathological voice databases and proposes solutions for enhancing the performance of voice abnormality classification. Overall, the study's findings have potential applications in clinical applications and specialized audio-capturing tools.

2.
Comput Methods Programs Biomed ; 242: 107821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776709

RESUMO

Background and Objective Respiratory Diseases are one of the leading chronic illnesses in the world according to the reports by World Health Organization. Diagnosing these respiratory diseases is done through auscultation where a medical professional listens to sounds of air in the lungs for anomalies through a stethoscope. This method necessitates extensive experience and can also be misinterpreted by the medical professional. To address this issue, we introduce an AI-based solution that listens to the lung sounds and classifies the respiratory disease detected. Since the research work deals with medical data that is tightly under wraps due to privacy concerns in the medical field, we introduce a Deep learning solution to classify the diseases and a custom Federated learning (FL) approach to further improve the accuracy of the deep learning model and simultaneously maintain data privacy. Federated Learning architecture maintains data privacy and facilitates a distributed learning system for medical infrastructures. Methods The approach utilizes Generative Adversarial Networks (GAN) based Federated learning approach to ensure data privacy. Generative Adversarial Networks generate new data by synthesizing new lung sounds. This new synthesized data is then converted to spectrograms and trained on a neural network to classify four lung diseases, Heart Attack and Normal breathing patterns. Furthermore, to address performance loss during FL, we also propose a new "Weighted Aggregation through Probability-based Ranking (FedWAPR)" algorithm for optimizing the FL aggregation process. The FedWAPR aggregation takes inspiration from exponential distribution function and ranks better performing clients according to it. Results and Conclusion A test accuracy of about 92% was achieved by the trained model while classifying various respiratory diseases and heart failure. Additionally, we developed a novel FedWAPR approach that significantly outperformed the FedAVG approach for the FL aggregate function. A patient can be checked for respiratory diseases using this improved learning approach without the need for extensive sensitive data recording or for making sure the data sample obtained is secure. In a decentralized training runtime, the trained model successfully classifies various respiratory diseases and heart failure using lung sounds with a test accuracy on par with a centralized model.


Assuntos
Insuficiência Cardíaca , Doenças Respiratórias , Humanos , Sons Respiratórios , Algoritmos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...