Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21970765

RESUMO

Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.


Assuntos
Fêmur/anatomia & histologia , Joelho/anatomia & histologia , Modelos Anatômicos , Tíbia/anatomia & histologia , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade
2.
Artigo em Inglês | MEDLINE | ID: mdl-23366575

RESUMO

A data driven surrogate was developed to bridge the gap between finite element and multibody modeling and to expand the information available from a rigid multibody cartilage simulation. An indentation experiment performed on canine stifle cartilage was modeled in both paradigms with acceptable accuracy and the data were used to create the surrogate. Neural networks were found to adequately approximate the von Mises stress calculated by the finite element model based on force values provided from the multibody model with a correlation coefficient over 0.96.


Assuntos
Fenômenos Biomecânicos , Cartilagem/fisiologia , Simulação por Computador , Análise de Elementos Finitos , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...