Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 118: 252-263, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29627381

RESUMO

The toxic effects of Ochratoxin A (OTA), a fungal secondary metabolite of the genera Aspergillus and Penicillium with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) a Parkinson inducing drug were investigated to evaluate the neurotoxic effects exerted by OTA. OTA is known to contaminate food and feedstuff leading to a wide range of toxicity like nephrotoxicity, hepatotoxicity, and immunotoxicity. However, due to the dearth of available information on the possible mechanisms of OTA neurotoxicity and neurodegeneration the current study was undertaken. Hence, in this study, we examined the neurotoxic effects and the possible mechanism of action of neurodegeneration by OTA toxicity on mice brain by conducting a battery of behavioural studies and reviewing neurotransmitter levels and neuronal apoptotic pathways. Further, they were treated with l-Dopa, a precursor of dopamine (DA) to explore its ameliorative effects against OTA. The results of behavioural studies like gait analysis, spontaneous activity, cylinder test and pole test showed that OTA exhibits Parkinsonian physiognomies which were stabilized with l-Dopa treatment. Also, OTA toxicity showed insults on neurotransmitter levels and general brain function parameters that were normalized with l-Dopa treatment. The results of the present study suggest that OTA promotes neurodegeneration by targeting neuronal pathway leading to the development of Parkinson's diseases.


Assuntos
Antiparkinsonianos/uso terapêutico , Carcinógenos/toxicidade , Levodopa/uso terapêutico , Atividade Motora/efeitos dos fármacos , Ocratoxinas/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Antiparkinsonianos/farmacologia , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Distribuição Aleatória , Resultado do Tratamento
2.
Front Microbiol ; 7: 1142, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27531992

RESUMO

Ochratoxin-A (OTA), is toxic secondary metabolite and is found to be a source of vast range of toxic effects like hepatotoxicity, nephrotoxicity. However, the information available currently regarding neurotoxic effects exerted by OTA is scanty. Hence, the present study was aimed to evaluate the neurotoxic effects of OTA and the possible mechanisms of toxicity as well as the role of cytotoxic oxidative stress on neuronal (Neuro-2a) cell line was evaluated in vitro. Results of the MTT and LDH assay showed that, OTA induced dose-dependent cell death in Neuro-2a cells and EC50 value was determined as 500 nM. OTA induced high levels of reactive oxygen species (ROS) and elevated levels of malondialdehyde, also loss of mitochondrial membrane potential was observed in a dose depended manner. Effects of OTA on ROS induced chromosomal DNA damage was assessed by Comet assay and plasmid DNA damage assay in which increase in DNA damage was observed in Neuro-2a cells by increasing the OTA concentration. Further western blotting analysis of OTA treated Neuro-2a cells indicated elevated expression levels of c-Jun, JNK3 and cleaved caspase-3 leading to apoptotic cell death. Other hand realtime-Q-PCR analysis clearly indicates the suppressed expression of neuronal biomarker genes including AChE, BDNF, TH and NOS2. Further N-acetylcysteine (NAC) pretreatment to Neuro-2a cells followed by OTA treatment clearly evidenced that, the significant reversal of toxic effects exerted by OTA on Neuro-2a cells. In the present study, results illustrate that ROS a principle event in oxidative stress was elevated by OTA toxicity in Neuro-2a cells. However, further in vivo, animal studies are in need to conclude the present study reports and the use of NAC as a remedy for OTA induced neuronal stress.

3.
Cytotechnology ; 68(1): 157-172, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25062987

RESUMO

Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.

4.
Cytotechnology ; 66(5): 823-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24061554

RESUMO

Nitric oxide is a highly reactive free radical gas that reacts with a wide range of bio-molecules to produce reactive nitrogen species and exerts nitrative stress. Bacopa monniera is a traditional folk and ayurvedic medicine known to alleviate a variety of disorders. Aim of the present study is to evaluate the protective propensity of Bacopa monniera extract (BME) through its oxido-nitrosative and anti-apoptotic mechanism to attenuate sodium nitroprusside (SNP)-induced apoptosis in a human embryonic lung epithelial cell line (L132). Our results elucidate that pre-treatment of L132 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP as evidenced by MTT and LDH leakage assays. BME pre-treatment inhibited NO generation by down-regulating inducible nitric oxide synthase expression. BME exhibited potent antioxidant activity by up-regulating the antioxidant enzymes. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic biomarkers such as Bax, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. By considering all these findings, we report that BME protects L132 cells against SNP-induced toxicity via its free radical scavenging and anti-apoptotic mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...