Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(8): 8025-8035, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35294703

RESUMO

Myo-inositol is one of the most abundant form of inositol. The myo-inositol (MI) serves as substrate to diverse biosynthesis pathways and hence it is conserved across life forms. The biosynthesis of MI is well studied in animals. Beyond biosynthesis pathway, implications of MI pathway and enzymes hold potential implications in plant physiology and crop improvement. Myo-inositol oxygenase (MIOX) enzyme catabolize MI into D-glucuronic acid (D-GlcUA). The MIOX enzyme family is well studied across few plants. More recently, the MI associated pathway's crosstalk with other important biosynthesis and stress responsive pathways in plants has drawn attention. The overall outcome from different plant species studied so far are very suggestive that MI derivatives and associated pathways could open new directions to explore stress responsive novel metabolic networks. There are evidences for upregulation of MI metabolic pathway genes, specially MIOX under different stress condition. We also found MIOX genes getting differentially expressed according to developmental and stress signals in Arabidopsis and wheat. In this review we try to highlight the missing links and put forward a tailored view over myo-inositol oxidation pathway and MIOX proteins.


Assuntos
Arabidopsis , Inositol Oxigenase , Animais , Arabidopsis/metabolismo , Vias Biossintéticas , Inositol/metabolismo , Inositol Oxigenase/genética , Inositol Oxigenase/metabolismo , Oxirredução
3.
J Plant Res ; 134(3): 475-495, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616799

RESUMO

Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.


Assuntos
Proteínas de Plantas , Fatores de Transcrição , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética
4.
Front Plant Sci ; 11: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296449

RESUMO

Cpf1, an endonuclease of the class 2 CRISPR family, fills the gaps that were previously faced in the world of genome engineering tools, which include the TALEN, ZFN, and CRISPR/Cas9. Other simultaneously discovered nucleases were not able to carry out re-engineering at the same region due to the loss of a target site after first-time engineering. Cpf1 acts as a dual nuclease, functioning as an endoribonuclease to process crRNA and endodeoxyribonuclease to cleave target sequences and generate double-stranded breaks. Additionally, Cpf1 allows for multiplexed genome editing, as a single crRNA array transcript can target multiple loci in the genome. The CRISPR/Cpf1 system enables gene deletion, insertion, base editing, and locus tagging in monocot as well as in dicot plants with fewer off-target effects. This tool has been efficiently demonstrated into tobacco, rice, soybean, wheat, etc. This review covers the development and applications of Cpf1 mediated genome editing technology in plants.

5.
Front Plant Sci ; 9: 259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559984

RESUMO

Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA) is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1) is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5). Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28-56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe) and zinc (Zn) content, thereby enhancing their molar ratios (Zn:PA and Fe:PA). Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.

6.
Front Plant Sci ; 6: 488, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191068

RESUMO

The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...