Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38644993

RESUMO

Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully flowed in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics. TEASER: A multiple myeloma model can study why the disease is still challenging to treat despite options that work well in other cancers.

2.
Osteoarthritis Cartilage ; 32(3): 287-298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072172

RESUMO

OBJECTIVE: The crosstalk of joint pathology with local lymph nodes in osteoarthritis (OA) is poorly understood. We characterized the change in T cells in lymph nodes following load-induced OA and established the association of the presence and migration of T cells to the onset and progression of OA. METHODS: We used an in vivo model of OA to induce mechanical load-induced joint damage. After cyclic tibial compression of mice, we analyzed lymph nodes for T cells using flow cytometry and joint pathology using histology and microcomputed tomography. The role of T-cell migration and the presence of T-cell type was examined using T-cell receptor (TCR)α-/- mice and an immunomodulatory drug, Sphingosine-1-phosphate (S1P) receptor inhibitor-treated mice, respectively. RESULTS: We demonstrated a significant increase in T-cell populations in local lymph nodes in response to joint injury in 10, 16, and 26-week-old mice, and as a function of load duration, 1, 2, and 6 weeks. T-cell expression of inflammatory cytokine markers increased in the local lymph nodes and was associated with load-induced OA progression in the mouse knee. Joint loading in TCRα-/- mice reduced both cartilage degeneration (Osteoarthritis Research Society International (OARSI) scores: TCRα 0.568, 0.981-0.329 confidence interval (CI); wild type (WT) 1.328, 2.353-0.749 CI) and osteophyte formation. Inhibition of T-cell egress from lymph nodes attenuated load-induced cartilage degradation (OARSI scores: Fingolimod: 0.509, 1.821-0.142 CI; Saline 1.210, 1.932-0.758 CI) and decreased localization of T cells in the synovium. CONCLUSIONS: These results establish the association of lymph node-resident T cells in joint damage and suggest that the S1P receptor modulators and T-cell immunotherapies could be used to treat OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Microtomografia por Raio-X , Linfócitos T , Osteoartrite/metabolismo , Cartilagem/patologia , Articulação do Joelho/patologia , Modelos Animais de Doenças , Cartilagem Articular/patologia
3.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37215018

RESUMO

Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, which are essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters could overcome the shortcomings of parenteral vaccines and enhance pre- existing systemic immunity. Here we present a new protein subunit nanovaccine using multiadjuvanted (e.g. RIG-I: PUUC, TLR9: CpG) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL- NPs, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lung, and showed robust systemic humoral immunity. Interestingly, as a purely intranasal vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. Our data suggest that PUUC+CpG PAL-NP subunit vaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.

4.
ACS Biomater Sci Eng ; 9(2): 1116-1131, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36720672

RESUMO

The global pandemic of COVID-19 and emerging antimicrobial drug resistance highlights the need for sustainable technology that enables more preparedness and active control measures. It is thus important to have a reliable solution to avert the present situations as well as preserve nature for habitable life in the future. One time use of PPE kits is promoting the accumulation of nondegradable waste, which may pose an unforeseen challenge in the future. We have developed a biocompatible, biodegradable, and nonirritating nanoemulsion coating for textiles. The study focused on coating cotton fabric to functionalize it with broad spectrum antimicrobial, antibiofilm, and anti-SARS-CoV-2 activity. The nanoemulsion comprises spherical particles of chitosan, oleic acid, and eugenol that are cross-linked to fibers. The nanoemulsion caused complete destruction of pathogens even for the most rigid biofilms formed by drug resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans on the surface of the coated fabric. The secondary coat with beeswax imparts super hydrophobicity and 20 wash cycle resistance and leads to enhanced barrier properties with superior particulate filtration, bacterial filtration, and viral penetration efficiency as compared to an N95 respirator. The coated fabric qualifies as per standard parameters like breathability, flammability, splash resistance, and filtration efficiency for submicrometer particles, bacteria, and viruses. The scaleup and bulk manufacturing of the coating technology on fabric masks complied with standards. The consumer feedback rated the coated mask with high scores in breathability and comfortability as compared to an N95. The strategy promises to provide a long-term sustainable model compared to single use masks and PPE that will remain a nondegradable burden on the ecosystem for years to come.


Assuntos
Anti-Infecciosos , COVID-19 , Staphylococcus aureus Resistente à Meticilina , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Ecossistema , Máscaras , Têxteis , Anti-Infecciosos/farmacologia , Biopolímeros
5.
Biomed Mater ; 17(4)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35168221

RESUMO

Adequate micronutrient availability is particularly important in women, children and infants. Micronutrient deficiencies are the major cause of maternal and neonatal morbidity. To overcome this, WHO recommends the use of folic acid and iron supplements for reducing anaemia and improving the health of the mother and infants. Oral intake of supplements for nutritional deficiencies are associated with gastric irritation, nausea, constipation and non-patient compliance due to associated taste. In case of absorption deficiency nutrients administered orally pass-through digestive tract unabsorbed. In the present study, we propose transdermal delivery of nutraceuticals to avoid the limitations associated with oral intake. Transdermal delivery has limited use because of the closely packed barrier of the stratum corneum that limits the permeability of molecules across skin. Here, we have used biomimetic nanovesicles impregnated in transdermal patches for delivery of folic acid and iron. Nanovesicles are prepared using an abundant component of cell membrane, phosphatidyl choline and a permeation enhancer. Further these nanovesicles are impregnated onto polyacrylate based transdermal patch.In vitrostudies have shown the ability of nanovesicles to fluidise skin lipids and penetrate into deeper skin.In vivoapplication of transdermal patches gradually increased the systemic concentration of nutraceuticals. Post application of the patch, five-fold increase in plasma folic acid concentration and 1.5-fold increase in plasma iron concertation was achieved in 6 h. Developed nanovesicles were compatible with keratinocytes and fibroblasts as testedin vitroand have the potential to enhance the cellular uptake of molecules. Skin irritation studies on human volunteers have confirmed the safety of nutraceutical loaded nanovesicles. Thus, the developed nutraceutical loaded transdermal patches provide a potential, easy to use platform for micronutrient delivery in infants and mothers.


Assuntos
Deficiências de Ferro , Adesivo Transdérmico , Criança , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/metabolismo , Humanos , Recém-Nascido , Ferro , Mentol/metabolismo , Micronutrientes/metabolismo , Fosfolipídeos/metabolismo , Pele/metabolismo , Absorção Cutânea
6.
Artigo em Inglês | MEDLINE | ID: mdl-34423571

RESUMO

Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanopartículas , Envelhecimento da Pele , Nanotecnologia , Pele/metabolismo
7.
J Mater Chem B ; 9(3): 864-875, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33392614

RESUMO

The increase in drug-resistant strains of Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has led to an increased rate of infection-related mortality. The emergence of drug resistance has rendered many antibiotics ineffective. The poor penetration and retention of antibiotics in mammalian cells lead to recurrent latent infections. Thus, there is an increasing need for biodegradable, non-toxic anti-infectives that are effective in treating MRSA infections. Phytochemicals such as berberine (BBR) and curcumin (CCR) have long been explored for their antibacterial activities, but their efficacy is often limited due to low bioavailability, water solubility, and poor cell penetration. When used in combination these antimicrobials did not show any synergistic effect against MRSA. Here, both of them were co-encapsulated in liposomes (BCL) and evaluated for biocompatibility, synergistic antimicrobial activity, intracellular infections, associated inflammation, and on biofilms formed by MRSA. Co-encapsulation of BBR and CCR in liposomes decreased their MICs by 87% and 96%, respectively, as compared to their free forms with a FICI of 0.13, indicating synergy between them. BCL inhibited the growth of MRSA and prevented biofilm formation better than free drugs. Co-culture studies showed that intracellular infection was reduced to 77% post BCL treatment. It also reduced the production of pro-inflammatory cytokines by macrophages following infection. The liposomes were found to be five times more efficient than clindamycin and can be used as a potential antimicrobial carrier against intracellular infections.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Biofilmes/efeitos dos fármacos , Curcumina/farmacologia , Inflamação/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/química , Berberina/química , Células Cultivadas , Curcumina/química , Humanos , Lipossomos/síntese química , Lipossomos/química , Lipossomos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície , Células THP-1
8.
ACS Biomater Sci Eng ; 7(1): 144-156, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33346632

RESUMO

Paclitaxel (PTX) is a potent anticancer agent, which is clinically administered by infusion for treating pulmonary metastasis of different cancers. Systemic injection of PTX is promising in treating pulmonary metastasis of various cancers but simultaneously leads to many severe complications in the body. In this study, we have demonstrated a noninvasive approach for delivering PTX to deep pulmonary tissues via an inhalable phospholipid-based nanocochleate platform and showed its potential in treating pulmonary metastasis of melanoma cancer. Nanocochleates have been previously explored for oral delivery of anticancer drugs; their application for aerosol-based administration has not been accomplished in the literature thus far. Our results showed that the PTX-carrying aerosol nanocochleates (PTX-CPTs) possessed excellent pulmonary surfactant action characterized by high surface activity and encouraging in vitro terminal airway patency when compared to the marketed Taxol formulation, which is known to contain a high amount of Cremophore EL. We observed under in vitro twin-impinger analysis that the PTX-CPT had a high tendency to get deposited in stage II (alveolar region of lungs), indicating the capability of CPT to reach the deep alveolar region. Further, while exposed to the human lung adenocarcinoma cell line (A549), the PTX-CPT showed excellent cytotoxicity mediated by enhanced cellular uptake via energy-dependent endocytosis. Aerosol-based administration of PTX-CPT in a pulmonary metastatic murine melanoma model (B16F10) resulted in significant (p < 0.05) tumor growth inhibition when compared to an intravenous dose of Taxol. Inhibition of tumor growth in aerosol-based PTX-CPT-treated animals was evident by the significant (p < 0.05) reduction in numbers of tumor nodules and percent metastasis area covered by melanoma cells in the lung when compared to other treatment groups. Overall, our finding suggests that PTX can be safely administered in the form of an aerosol using a newly developed CPT system, which serves a dual purpose as both a drug delivery carrier and a pulmonary surfactant in treating pulmonary metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Aerossóis , Animais , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Paclitaxel
9.
Nanoscale ; 12(24): 12673-12697, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32524107

RESUMO

Rheumatoid Arthritis (RA), one of the leading causes of disability due to progressive autoimmune destruction of synovial joints, affects ∼1% of the global population. Standard therapy helps in reducing inflammation and delaying the progression of RA but is limited by non-responsiveness on long-term use and several side-effects. The conventional nanocarriers (CNCs), to some extent, minimize toxicity associated with free drug administration while improving the therapeutic efficacy. However, the uncontrolled release of the encapsulated drug even at off-targeted organs limits the application of CNCs. To overcome these challenges, trigger-responsive engineered nanocarriers (ENCs) have been recently explored for RA treatment. Unlike CNCs, ENCs enable precise control over on-demand drug release due to endogenous triggers in arthritic paws like pH, enzyme level, oxidative stress, or exogenously applied triggers like near-infrared light, magnetic field, ultrasonic waves, etc. As the trigger is selectively applied to the inflamed joint, it potentially reduces toxicity at off-target locations. Moreover, ENCs have been strategically coupled with imaging probe(s) for simultaneous monitoring of ENCs inside the body and facilitate an 'image-guided-co-trigger' for site-specific action in arthritic paws. In this review, the progress made in recently emerging 'trigger-responsive' and 'image-guided theranostics' ENCs for RA treatment has been explored with emphasis on the design strategies, mechanism, current status, challenges, and translational perspectives.


Assuntos
Artrite Reumatoide , Medicina de Precisão , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Humanos , Inflamação
10.
Sci Rep ; 10(1): 8587, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444829

RESUMO

Systemic toxicity caused by conventional chemotherapy is often regarded as one of the major challenges in the treatment of cancer. Over years, the trigger-based modality has gained much attention as it holds the spatiotemporal control over release and internalization of the drug. In this article, we are reporting an increase in the anti-tumor efficacy of curcumin due to ultrasound pulses. MDA MB 231 breast cancer and B16F10 melanoma cells were incubated with lecithin-based curcumin encapsulated nanoemulsions and exposed to ultrasound in the presence and absence of microbubble. Ultrasound induced sonoporation enhanced the cytotoxicity of curcumin in MDA MB 231 and B16F10 cancer cells in the presence of microbubble by 100- and 64-fold, respectively. To study the spatiotemporal delivery of curcumin, we developed B16F10 melanoma subcutaneous tumor on both the flanks of C57BL/6 mice but only the right tumor was exposed to ultrasound. Insonation of the right tumor spatially enhanced the cytotoxicity and enabled the substantial regression of the right tumor compared to the unexposed left tumor which grew continuously in size. This study showed that the ultrasound has the potential to target and increase the drug's throughput to the tumor and enable effective treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lecitinas/química , Melanoma Experimental/tratamento farmacológico , Ultrassonografia/métodos , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Curcumina/química , Curcumina/farmacocinética , Feminino , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Nanotecnologia , Ratos , Ratos Wistar , Análise Espaço-Temporal , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Mater Chem B ; 8(22): 4890-4898, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32285904

RESUMO

Over decades bacteria have evolved multiple mechanisms to fight antibiotics. Biofilm formation by bacteria is one such mechanism as it forms a barrier and creates an acidic environment that reduces the efficiency of antimicrobials. Bacteria have also developed the ability to persist intracellularly within mammalian cells, causing recurrent infections. Many antibiotics are rendered ineffective due to poor penetration across biofilms and within mammalian cells. In this study, silver-gold hybrid nanoparticles were developed as anti-microbial agents to combat biofilm formation and intracellular infections. Biogenic hybrid silver gold nanoparticles were developed in an organic solvent free single reaction mixture using quercetin, a flavonoid, as the reducing and stabilizing agent. Silver-gold nanoparticles of 40 ± 10 nm diameter were effective against a broad spectrum of bacteria with minimum bactericidal concentrations of 10 µg ml-1 and 20 µg ml-1 for Gram negative and Gram-positive organisms, respectively. These nanoparticles were also effective against mixed infections at 20 µg ml-1. Their mode of action involves generating intracellular oxidative stress in both Gram negative and Gram-positive bacteria, which causes damage to the cell wall. Polymicrobial biofilm formation was suppressed and intracellular infection was reduced by 70% to 90% in fibroblast and monocyte cell lines. These results indicate that hybrid silver gold nanoparticles are promising agents to suppress biofilm formation and tackle intracellular infections.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Materiais Biocompatíveis/farmacologia , Ouro/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Prata/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Células Cultivadas , Farmacorresistência Bacteriana/efeitos dos fármacos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Quercetina/química , Prata/química , Propriedades de Superfície
12.
Acta Biomater ; 108: 1-21, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32268235

RESUMO

Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. 'Nanovaccines' have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. STATEMENT OF SIGNIFICANCE: Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.


Assuntos
Nanopartículas , Vacinas , Anticorpos , Apresentação de Antígeno , Antígenos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...