Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 499: 283-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21683259

RESUMO

Most serpins inhibit serine and/or cysteine proteases, and their inhibitory activities are usually defined in vitro. However, the physiological protease targets of most serpins are unknown despite many years of research. This may be due to the rapid degradation of the inactive serpin:protease complexes and/or the conditions under which the serpin inhibits the protease. The model organism Caenorhabditis elegans is an ideal system for identifying protease targets due to powerful forward and reverse genetics, as well as the ease of creating transgenic animals. Using combinatorial approaches of genetics and biochemistry in C. elegans, the true in vivo protease targets of the endogenous serpins can be elucidated.


Assuntos
Serpinas/metabolismo , Animais , Caenorhabditis elegans , Imunoprecipitação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Serpinas/genética
2.
Pediatr Res ; 65(1): 10-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18852689

RESUMO

As an experimental system, Caenorhabditis elegans offers a unique opportunity to interrogate in vivo the genetic and molecular functions of human disease-related genes. For example, C. elegans has provided crucial insights into fundamental biologic processes, such as cell death and cell fate determinations, as well as pathologic processes such as neurodegeneration and microbial susceptibility. The C. elegans model has several distinct advantages, including a completely sequenced genome that shares extensive homology with that of mammals, ease of cultivation and storage, a relatively short lifespan and techniques for generating null and transgenic animals. However, the ability to conduct unbiased forward and reverse genetic screens in C. elegans remains one of the most powerful experimental paradigms for discovering the biochemical pathways underlying human disease phenotypes. The identification of these pathways leads to a better understanding of the molecular interactions that perturb cellular physiology, and forms the foundation for designing mechanism-based therapies. To this end, the ability to process large numbers of isogenic animals through automated work stations suggests that C. elegans, manifesting different aspects of human disease phenotypes, will become the platform of choice for in vivo drug discovery and target validation using high-throughput/content screening technologies.


Assuntos
Caenorhabditis elegans/genética , DNA de Helmintos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Modelos Animais , Animais , Animais Geneticamente Modificados , Apoptose/genética , Sequência de Bases , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Sequência Conservada , Bases de Dados Genéticas , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Mutação , Necrose , Doenças Parasitárias/genética , Fenótipo , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...