Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38874619

RESUMO

The present study optimized pre-treatment conditions for bioenzyme-mediated hydro-distillation (BMHD) for extraction of mint oil from mentha leaves and the results were compared with those of traditional hydro-distillation (HD) method using response surface methodology. The bio-enzymes produced from moringa leaves had maximum pectinase activity (287.04 µg of sugar/min/ml) followed by xylanase (87.78 µg of sugar/min/ml) while endoglucanase, exoglucanase and amylase activities were comparatively low. The optimized conditions for HD were 69.08 temperature for 173.70 min with water:sample of 10.0. The optimized conditions for enzyme pre-treatment of mentha leaves by BMHD were enzyme concentration of 8%, for a period of 120 min at an incubation period of 40 â„ƒ. The yield (%) and menthol content (%) of the oil at optimized conditions by HD were 1.55 ml/100 g of sample and 56.40% menthol content, respectively, and for BMHD the yield and menthol content (%) of the oil at optimized conditions were 3.69% and 72.80%, respectively. It was found that BMHD leads to a 130% increase in the yield of mint oil and a 10% increase in menthol content as compared to the HD method. No significant difference in physical parameters was observed in mint oil extracted via both methods. Therefore, BMHD is a cost-effective and sustainable approach having an edge over the HD method without compromising the quality and could be a viable approach for commercial purposes.

2.
J Basic Microbiol ; 64(4): e2300496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279542

RESUMO

The primary objective of this study was to comprehensively explore the biochemical profile of the novel halotolerant microalgae strain, biogas laboratory scenedesmus (BGLRS), previously isolated from waterlogged regions in the southwest zone of Punjab, India. To achieve this, three distinct drying methods viz. freeze-drying, oven-drying, and shade-drying were employed and biochemical composition and antioxidant analyses on the microalgal biomass were conducted. Utilizing advanced analytical techniques, including high-performance liquid chromatography (HPLC), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and gas chromatography-mass spectroscopy (GC-MS) on freeze-dried biomass, its carbohydrate profile, micronutrient composition, and presence of bioactive compounds with potential therapeutic and nutraceutical significance were sought to unravel. Among the drying methods evaluated, freeze-drying exhibited the most promising experimental results, prompting its selection for further investigation. Notably, ICP-AES unveiled elevated concentrations of essential elements such as calcium, iron, magnesium, and phosphorus in BGLRS, with negligible traces of heavy metals, underscoring its safety for human consumption. GC-MS analysis further divulged the existence of numerous biologically active compounds, indicating potential applications in medical and nutraceutical fields. Through molecular identification using sequencing of the internal transcribed spacer (ITS) region, a close taxonomic resemblance between BGLRS and Scenedesmus sp. MKB was established, solidifying its unique position within the microalgal taxonomy. The deposition of ITS sequences into the NCBI GenBank, obtaining accession number MN796425, attests to the rigor and transparency of this research. Overall, these findings strongly suggest that microalgae BGLRS possesses high-quality biochemical attributes of significant therapeutic and nutraceutical importance.


Assuntos
Metais Pesados , Microalgas , Humanos , Microalgas/genética , Antioxidantes , Dessecação , Biomassa
3.
Physiol Mol Biol Plants ; 29(10): 1457-1474, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076765

RESUMO

The cooperative role of vital components of the antioxidative defense pathway in addition to redox couples was studied in a growth-phase dependent manner at 20, 30, and 40 days after subculturing (DAS) in five different euryhaline microalgal strains (EMS) Scenedesmus MKB (B-S), Spirulina subsalsa (B-6), Anabaena sp. (B-7), Chlorella sp. (B-8), and Chlorosarcinopsis eremi (B-18) collected from waterlogged areas of Punjab, India and in two freshwater microalgal strains (FMS). EMS surpasses to maintain a high redox couple's ratio ascorbic acid/dehydroascorbate (AsA/DHA), and reduced glutathione/oxidized glutathione (GSH/GSSG) through a close-knit pattern of antioxidative enzymes including high specific activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and less specific activity of glutathione peroxidase (GPX). While FMS struggled for the same irrespective of near similar total glutathione and higher specific activity of GPX might be answerable for the lesser redox ratio than EMS. However, high specific activity of catalase (CAT) might be sought to compensate for the less increase of APX in FMS. The fact significantly less H2O2, and malondialdehyde (MDA) with DAS in EMS than in FMS and higher redox ratios exquisitely elevate their tolerance ability making EMS a captivating prospect for cultivation in waterlogged areas. Additionally, their abundance of potent antioxidants further highlights the potential of EMS as an excellent source of these beneficial compounds.

4.
Mol Biotechnol ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794216

RESUMO

The most cost-effective technique to cultivate microalgae is with low-cost resources, like fruit and vegetable peels. This study examined the viability of culturing microalgae (Oscillatoria sancta PCC 7515) isolated from a waterlogged region of Punjab, India, in a low-cost medium (fruit and vegetable waste peels) for pharmaceutical use. 16S rRNA sequencing discovered O. sancta PCC 7515. Fruit and vegetable peels were mineralized and chemically analyzed. At a 5% Bacillus flexus concentration, fruit and vegetable peels were liquefied at room temperature for 24 h. Response Surface Methodology (RSM) was used to assess and improve important cultural variables. The RSM predicted the best results at 10 pH, 30 days of incubation, 5% inoculum concentration, and 5% fruit and vegetable waste liquid leachate. The optimum conditions yielded more biomass than the basal conditions (0.8001 g/L). O. sancta PCC 7515 produced more lipids, proteins, Chl a, and Chl b in a formulated alternate medium than standard media. This study shows that O. sancta PCC 7515 may thrive on fruit and vegetable peel media. Fruit and vegetable waste (FVW) media assure low-cost microalgae-based functional foods.

5.
Ultrason Sonochem ; 99: 106595, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699293

RESUMO

The present work explores different conditions of thermosonication (TS) processing that would ensure microbiological and enzymatic safety for guava juice while simultaneously maximizing the preservation of its quality attributes. The guava juice was subjected to TS treatment (frequency: 40 kHz; power: 200 W; Temperature: 40, 60, and 80 °C; Time: 2, 6 and 10 min) and was compared with fresh and pasteurized (90 °C/60 s) juice samples. The objectives of the research work were to determine the effect of thermosonication on the quality attributes such as total soluble solids (TSS), pH, titratable acidity, cloud value, color attributes, total phenolic contents, total flavonoid contents, antioxidant activity, ascorbic acid levels, enzymatic, microbiological, and sensory properties. The thermosonicated and pasteurized samples showed no significant (p > 0.05) changes in pH, total soluble solids, and titratable acidity. TS improved the cloud value and color attributes. Furthermore, TS enhanced total phenols (10 to17%), flavonoids (5 to 25%), antioxidant activity (10.45% to 14.55%) and retention of ascorbic acid (61.98-83.32%) relative to control. Thermosonicated sample at 80 °C/10 min gives the maximum inactivation of Pectin methyl esterase (PME), Peroxidase (POD) and Polyphenol oxidase (PPO) enzymes. While both thermosonication and pasteurization drastically decreased the microbial count to undetectable levels, only TS exhibited modest improvement in sensory qualities. The results demonstrated that TS can enhance the overall safety, quality, and commercial viability of guava juice as a practical substitute to pasteurization.


Assuntos
Antioxidantes , Psidium , Ácido Ascórbico , Catecol Oxidase , Corantes , Flavonoides , Peroxidases/química , Peroxidases/metabolismo , Fenóis
6.
Phytochem Rev ; : 1-31, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36686403

RESUMO

The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research.

7.
J Food Sci ; 87(7): 2798-2819, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35708201

RESUMO

Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.


Assuntos
Salvia , Antioxidantes/análise , Alimento Funcional , Preparações Farmacêuticas/análise , Extratos Vegetais , Óleos de Plantas/química , Salvia/química , Salvia hispanica , Sementes/química
8.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769462

RESUMO

Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source-sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.


Assuntos
Carboidratos/biossíntese , Ciclo do Carbono/fisiologia , Ciclo do Nitrogênio/fisiologia , Plântula/metabolismo , Sementes/metabolismo , Germinação
9.
J Food Sci Technol ; 55(8): 3199-3211, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065431

RESUMO

Biochemical changes in response to storage conditions and packaging were investigated in basil leaves of variety Genovese in order to find out suitable conditions for their storage. Fresh basil leaves placed in open trays or packed in lowdensity polyethylene (LDPE) bags were stored at 5, 12 °C and under ambient conditions (12.2-21.0 °C) for 12 days. Chlorophyll content, total phenols, total flavonoids and antioxidant activity of basil leaves decreased with simultaneous increase in electrolyte leakage and TBA reactive compounds during whole storage period. Packaging of leaves and storage at 5 °C slowed down the changes in these quality parameters in comparison to those kept in open trays and stored at 12 °C and ambient temperature respectively. Activities of enzymes catechol oxidase and lipoxygenase which increased during storage were slowed down by packaging and decrease in storage temperature. Irrespective of storage conditions and packaging, activities of antioxidative enzymes viz. catalase, peroxidase and superoxide dismutase increased during storage. Rapid increase in activities of antioxidative enzymes was observed LDPE packed leaves than those held in open trays and in leaves stored at 5 °C as compared to 12 °C and ambient temperature. Basil leaves packed in LDPE and stored at 5 °C showed the slowest changes in biochemical parameters and the highest activities of antioxidative enzymes and could be stored for 12 days in comparison to 6 days in open trays at ambient temperature.

10.
J Food Sci Technol ; 55(3): 1116-1126, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29487454

RESUMO

Effect of post harvest treatments with calcium chloride (CaCl2) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

11.
J Food Sci Technol ; 51(1): 118-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24426056

RESUMO

The mechanism imparting thermotolerance by gibberellic acid (GA3) and abscisic acid (ABA) is still unresolved using either spraying technique or in vitro conditions. Alternative way of studying these effects under near in vivo conditions is through the use of liquid culturing technique. Effects of GA3 and ABA (100 µM) on sucrose metabolism (invertase and sucrose synthase) and aminotransferases (GOT and GPT) in relation to starch and protein accumulation were studied in detached panicles of three wheat (Triticum aestivum L.) cultivars PBW 343, C 306 (heat tolerant) and WH 542 (heat susceptible) cultured in a liquid medium. Ears were subjected to heat shock treatment (45 °C for 2 h) and then maintained at 25 °C for 5 days. Heat shock treatment resulted in a significant decline in starch content but caused a marked build -up of total free sugars and protein content in grains of all cultivars. However, activities of acid and neutral invertases increased only in tolerant cultivars but reduced in susceptible cultivar. Following treatment with GA3 contents of starch and free sugars increased in grains maintained at 25 °C but free sugar content decreased in stressed grains compared to control. ABA application showed inhibitory effect on starch accumulation under normal temperature but was promotory under stress conditions. Concomitantly, soluble protein content also increased in conjunction with an increase in the activities of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT). Apparently, the wheat grain responds to heat shock mediated disruption of carbon metabolism by a compensatory effect on nitrogen metabolism. GA3 stimulated grain sink activity both under stress and non stress condition while ABA was promotory only under stress condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...