Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 259: 105374, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176612

RESUMO

Soluble alpha-amylases play an important role in the catabolism of polysaccharides. In this work, we show that the malt α -amylase can interact with the lipid membrane and further alter its mechanical properties. Vesicle fluctuation spectroscopy is used for quantitative measurement of the membrane bending rigidity of phosphatidylcholines lipid vesicles from the shape fluctuation based on the whole contour of Giant Unilamellar Vesicles (GUVs). The bending rigidity of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid vesicles in water increases significantly with the presence of 0.14 micromolar alpha-amylase (AA) in the exterior solution. It appears that the enzyme present in the external solution interacts with the outer layer of the bilayer membrane, leading to an asymmetry of the solution on either side of the bilayer membrane and altering its elasticity. At AA concentration of 1.5 micromolars and above, changes in the morphology of the GUV membrane are observed. The interaction between AA in the external solution and the external leaflet causes the bilayer membrane to curve spontaneously, leading to the formation of outbuds, giving a positive spontaneous curvature of C0 ≤ 0.05 µm-1 at ≈ 1 mg / ml of the AA concentration. We validate and characterize its concentration-dependent role in stabilizing the membrane curvature. Our findings indicate that the involvement of the enzyme, depending on the concentration, can have a considerable effect on the mechanical characteristics of the membrane.


Assuntos
Bicamadas Lipídicas , alfa-Amilases , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química
2.
Eur Biophys J ; 52(8): 749-756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882815

RESUMO

In the lyotropic phase of lipids with excess water, multilamellar tubules (MLTs) grow from defects. A phenomenological model for the stability of MLTs is developed that is universal and independent of the underlying growth mechanisms of MLTs. The stability of MLTs implies that they are in hydrostatic equilibrium and stable as elastic objects that have compression and bending elasticity. The results show that even with solvent pressure differences of 0.1 atm, the density profile is not significantly altered, so suggesting the stability is due to the trapped solvent. The results are of sufficient value in relation to lamellar stability models and may have implications beyond the described MLT models, especially in other models of membrane systems.


Assuntos
Lipídeos , Água , Elasticidade , Solventes , Pressão , Bicamadas Lipídicas
3.
Biochemistry ; 62(15): 2244-2251, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399091

RESUMO

Tip links are seen under microscopes as double-helical tetrameric complexes of long nonclassical cadherins, cadherin-23 and protocadherin-15. The twisted filamentous structure enables tip links to regulate mechanotransduction in hearing and balance. While the molecular details of the double-helical protocadherin-15 cis dimers have been deciphered, a similar conformation of cadherin-23 is still elusive. In a search of cadherin-23 cis dimers, we performed photoinduced cross-linking of unmodified proteins in solution and on lipid membranes and observed no trace of cadherin-23 cis dimers. Reportedly, tip links are dynamic connections, assembling and disassembling in seconds. Using lipid vesicles, we measured significantly slower aggregations between cis dimers of tip link cadherins than via dimer-monomer interactions, indicating that the trans interactions between two cis dimers may possess steric restraints and defer reassociations. Reconnections of tip links are thus kinetically most desired between protocadherin-15 cis dimers and cadherin-23 monomers. Here we propose that the helical geometry of tip links is induced by protocadherin-15 cis dimers, while cadherin-23 remains single before tip linking.


Assuntos
Mecanotransdução Celular , Protocaderinas , Mecanotransdução Celular/fisiologia , Células Ciliadas Auditivas/metabolismo , Lipídeos , Cabelo/metabolismo , Caderinas/metabolismo
4.
Commun Biol ; 6(1): 293, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934176

RESUMO

Cis and trans-interactions among cadherins secure multicellularity. While the molecular structure of trans-interactions of cadherins is well understood, work to identify the molecular cues that spread the cis-interactions two-dimensionally is still ongoing. Here, we report that transient, weak, yet multivalent, and spatially distributed hydrophobic interactions that are involved in liquid-liquid phase separations of biomolecules in solution, alone can drive the lateral-clustering of cadherin-23 on a membrane. No specific cis-dimer interactions are required for the lateral clustering. In cells, the cis-clustering accelerates cell-cell adhesion and, thus, contributes to cell-adhesion kinetics along with strengthening the junction. Although the physiological connection of cis-clustering with rapid adhesion is yet to be explored, we speculate that the over-expression of cadherin-23 in M2-macrophages may facilitate faster attachments to circulatory tumor cells during metastasis.


Assuntos
Caderinas , Ligação Proteica , Caderinas/metabolismo , Adesão Celular
5.
Adv Sci (Weinh) ; 8(21): e2102109, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569194

RESUMO

Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2-4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a "superelastic" response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.


Assuntos
Membrana Celular/química , Lipossomas Unilamelares/química , Linhagem Celular Tumoral , Colesterol/química , Elasticidade , Humanos , Fosfatidilgliceróis/química , Esfingomielinas/química , Tensão Superficial
6.
Soft Matter ; 16(31): 7359-7369, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32696791

RESUMO

We use a microfluidic method to estimate the water permeability coefficient (p) of membranes. As model lipid membranes we employ giant unilamellar vesicles (GUVs) composed of palmitoyloleoyl phosphatidylcholine and cholesterol (10 mol%). We have developed a microfluidic device with multiple chambers to trap GUVs and allow controlled osmotic exchange. Each chamber has a ring-shaped pressure-controlled valve which upon closure allows isolation of the GUVs in a defined volume. Opening the valves leads to a rapid fluid exchange between the trapping region and the microchannel network outside, thus allowing precise control over solution concentration around the GUVs contrary to other experimental approaches for permeability measurements reported in the literature. The area and volume changes of individual vesicles are monitored with confocal microscopy. The solute concentration in the immediate vicinity of the GUVs, and thus the concentration gradient across the membrane, is independently assessed. The data are well fitted by a simple model for water permeability which assumes that the rate of change in volume of a GUV per unit area is linearly proportional to concentration difference with permeability as the proportionality constant. Experiments of GUV osmotic deflation with hypertonic solutions yield the permeability of POPC/cholesterol 9/1 membranes to be p = 15.7 ± 5.5 µm s-1. For comparison, we also show results using two other approaches, which either do not take into account local concentration changes and/or do not resolve the precise vesicle shape. We point out the errors associated with these limitations. Finally, we also demonstrate the applicability of the microfluidic device for studying the dynamics of vesicles under flow.

7.
Nat Commun ; 11(1): 905, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060284

RESUMO

The proliferation of life on earth is based on the ability of single cells to divide into two daughter cells. During cell division, the plasma membrane undergoes a series of morphological transformations which ultimately lead to membrane fission. Here, we show that analogous remodeling processes can be induced by low densities of proteins bound to the membranes of cell-sized lipid vesicles. Using His-tagged fluorescent proteins, we are able to precisely control the spontaneous curvature of the vesicle membranes. By fine-tuning this curvature, we obtain dumbbell-shaped vesicles with closed membrane necks as well as neck fission and complete vesicle division. Our results demonstrate that the spontaneous curvature generates constriction forces around the membrane necks and that these forces can easily cover the force range found in vivo. Our approach involves only one species of membrane-bound proteins at low densities, thereby providing a simple and extendible module for bottom-up synthetic biology.


Assuntos
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular , Humanos
8.
Soft Matter ; 16(5): 1246-1258, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912078

RESUMO

Simple sugars such as glucose and sucrose are ubiquitous in all organisms. One remarkable property of these small solutes is their ability to protect biomembranes against dehydration damage. This property, which reflects the underlying sugar-lipid interactions, has been intensely studied for lipid bilayers interacting with a single sugar at low hydration. Here, we use giant vesicles to investigate fully hydrated lipid membranes in contact with two sugars, glucose and sucrose. The vesicles were osmotically balanced, with the same total sugar concentration in the interior and exterior aqueous solutions. However, the two solutions differed in their composition: the interior solution contained only sucrose whereas the exterior one contained primarily glucose. This sugar asymmetry generated a striking variety of multispherical or "multi-balloon" vesicle shapes. Each multisphere involved only a single membrane that formed several spherical segments, which were connected by narrow, hourglass-shaped membrane necks. These morphologies revealed that the sugar-lipid interactions generated a significant spontaneous curvature with a magnitude of about 1 µm-1. Such a spontaneous curvature can be generated both by depletion and by adsorption layers of the sugar molecules arising from effectively repulsive and attractive sugar-lipid interactions. All multispherical shapes are stable over a wide range of parameters, with a substantial overlap between the different stability regimes, reflecting the rugged free energy landscape in shape space. One challenge for future studies is to identify pathways within this landscape that allow us to open and close the membrane necks of these shapes in a controlled and reliable manner. We will then be able to apply these multispheres as metamorphic chambers for chemical reactions and nanoparticle growth.


Assuntos
Membrana Celular/metabolismo , Monossacarídeos/metabolismo , Lipossomas Unilamelares/química , Adsorção , Membrana Celular/química , Glucose/análise , Glucose/metabolismo , Lipídeos/química , Monossacarídeos/química , Osmose , Lipossomas Unilamelares/metabolismo
9.
ACS Nano ; 12(5): 4478-4485, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29659246

RESUMO

Giant unilamellar vesicles (GUVs) provide a direct connection between the nano- and the microregime. On the one hand, these vesicles represent biomimetic compartments with linear dimensions of many micrometers. On the other hand, the vesicle walls are provided by single molecular bilayers that have a thickness of a few nanometers and respond sensitively to molecular interactions with small solutes, biopolymers, and nanoparticles. These nanoscopic responses are amplified by the GUVs and can then be studied on much larger scales. Therefore, GUVs are increasingly used as a versatile research tool for basic membrane science, bioengineering, and synthetic biology. Conventional GUVs have one major drawback, however: they have only a limited capability to cope with external perturbations such as osmotic inflation, adhesion, or micropipette aspiration that tend to rupture the membranes. In contrast, cell membranes tolerate the same kinds of mechanical perturbations without rupture because the latter membranes are coupled to reservoirs of membrane area. Here, we introduce GUVs with membrane nanotubes as model systems that include such area reservoirs. To demonstrate the increased robustness of these tubulated vesicles, we use micropipette aspiration and changes in the osmotic conditions applied to phospholipid membranes doped with the glycolipid GM1. A quantitative comparison between theory and experiment reveals that the response of the GUVs is governed by the membranes' spontaneous tension, a curvature-elastic material parameter that describes the bilayer asymmetry on the nanoscale. Because of their increased robustness, GUVs with nanotubes represent improved research tools for membrane science, in general, with potential applications as storage and delivery systems and as cell-like microcompartments in bioengineering, pharmacology, and synthetic biology.

10.
Eur Biophys J ; 47(5): 531-538, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29392337

RESUMO

Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique "optimum smoothening" to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width [Formula: see text] and [Formula: see text] nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Razão Sinal-Ruído , Glicerol/química , Fosfatidilcolinas/química , Água/química
11.
Nat Protoc ; 12(8): 1563-1575, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28703789

RESUMO

There is accumulating evidence that the small-scale lateral organization of biological membranes has a crucial role in signaling and trafficking in cells. However, it has been difficult to characterize these features with existing methods for preparing and analyzing freestanding membranes, because the dynamics occurs below the optical resolution possible with these protocols. We have developed a protocol that permits the imaging of lipid nanodomains and lateral protein organization in membranes of giant unilamellar vesicles (GUVs). Freestanding GUVs are transferred onto a mica support, and after treatment with magnesium chloride, they collapse to form planar lipid bilayer (PLB) patches. Rapid GUV collapse onto the mica preserves the lateral organization of freestanding membranes and thus makes it possible to image 'snapshots' of GUVs up to nanometer resolution by high-resolution microscopy. The method has been applied to classical lipid raft mixtures in which suboptical domain fluctuations have been imaged in both the liquid-ordered and liquid-disordered membrane phases. High-resolution scanning by atomic force microscopy (AFM) of membranes composed of binary and ternary lipid mixtures reconstituted with Na+/K+-ATPase (NKA) has revealed the spatial distribution and orientations of individual proteins, as well as details of membrane lateral structure. Immunolabeling followed by confocal microscopy can also provide information about the spatial distribution of proteins. The protocol opens up a new avenue for quantitative biophysical studies of suboptical dynamic structures in biomembranes, which are local and short-lived. Preparation of GUVs, PLB patches and their imaging takes <24 h.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Fenômenos Biofísicos , Microscopia
12.
Biochim Biophys Acta ; 1858(6): 1390-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26994932

RESUMO

We have reconstituted functional Na(+)/K(+)-ATPase (NKA) into giant unilamellar vesicles (GUVs) of well-defined binary and ternary lipid composition including cholesterol. The activity of the membrane system can be turned on and off by ATP. The hydrolytic activity of NKA is found to depend on membrane phase, and the water relaxation in the membrane on the presence of NKA. By collapsing and fixating the GUVs onto a solid support and using high-resolution atomic-force microscopy (AFM) imaging we determine the protein orientation and spatial distribution at the single-molecule level and find that NKA is preferentially located at lo/ld interfaces in two-phase GUVs and homogeneously distributed in single-phase GUVs. When turned active, the membrane is found to unbind from the support suggesting that the protein function leads to softening of the membrane.


Assuntos
Bicamadas Lipídicas , ATPase Trocadora de Sódio-Potássio/química , Lipossomas Unilamelares
13.
Biochim Biophys Acta ; 1848(12): 3175-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26417657

RESUMO

Giant unilamellar vesicles (GUVs) are simple model membrane systems of cell-size, which are instrumental to study the function of more complex biological membranes involving heterogeneities in lipid composition, shape, mechanical properties, and chemical properties. We have devised a method that makes it possible to prepare a uniform sample of ternary GUVs of a prescribed composition and heterogeneity by mixing different populations of small unilamellar vesicles (SUVs). The validity of the protocol has been demonstrated by applying it to ternary lipid mixture of DOPC, DPPC, and cholesterol by mixing small unilamellar vesicles (SUVs) of two different populations and with different lipid compositions. The compositional homogeneity among GUVs resulting from SUV mixing is quantified by measuring the area fraction of the liquid ordered-liquid disordered phases in giant vesicles and is found to be comparable to that in GUVs of the prescribed composition produced from hydration of dried lipids mixed in organic solvent. Our method opens up the possibility to quickly increase and manipulate the complexity of GUV membranes in a controlled manner at physiological buffer and temperature conditions. The new protocol will permit quantitative biophysical studies of a whole new class of well-defined model membrane systems of a complexity that resembles biological membranes with rafts.


Assuntos
Misturas Complexas , Lipídeos/química , Microscopia Confocal
14.
Soft Matter ; 11(28): 5641-6, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26066670

RESUMO

We use fluorescence confocal polarised microscopy (FCPM) to study tubular growth upon hydration of dry DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) in water and water-glycerol mixtures. We have developed a model to relate the FCPM intensity profiles to the multilamellar structures of the tubules. Insertion of an additional patch inside a tubule produces a beaded structure, while a straight configuration is retained if the growth is on the outside. We use a simple model to suggest that reduction in overall curvature energy drives bead formation.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Glicerol/química , Microscopia Confocal , Microscopia de Fluorescência , Fosfatidilcolinas/química , Água/química
15.
Biochim Biophys Acta ; 1838(10): 2503-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24866014

RESUMO

We devise a methodology to fixate and image dynamic fluid domain patterns of giant unilamellar vesicles (GUVs) at sub-optical length scales. Individual GUVs are rapidly transferred to a solid support forming planar bilayer patches. These are taken to represent a fixated state of the free standing membrane, where lateral domain structures are kinetically trapped. High-resolution images of domain patterns in the liquid-ordered (lo) and liquid-disordered (ld) co-existence region in the phase-diagram of ternary lipid mixtures are revealed by atomic force microscopy (AFM) scans of the patches. Macroscopic phase separation as known from fluorescence images is found, but with superimposed fluctuations in the form of nanoscale domains of the lo and ld phases. The size of the fluctuating domains increases as the composition approaches the critical point, but with the enhanced spatial resolution, such fluctuations are detected even deep in the coexistence region. Agreement between the area-fraction of domains in GUVs and the patches respectively, supports the assumption that the thermodynamic state of the membrane remains stable. The approach is not limited to specific lipid compositions, but could potentially help uncover lateral structures in highly complex membranes.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Membranas Artificiais , Microdomínios da Membrana/diagnóstico por imagem , Microscopia de Força Atômica , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...