Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 10(9): 1141-50, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694053

RESUMO

The amygdaloid complex consists of diverse nuclei that belong to distinct functional systems, yet many issues about its development are poorly understood. Here, we identify a stream of migrating cells that form specific amygdaloid nuclei in mice. In utero electroporation showed that this caudal amygdaloid stream (CAS) originated in a unique domain at the caudal telencephalic pole that is contiguous with the dorsal pallium, which was previously thought to generate only neocortical cells. The CAS and the neocortex share mechanisms for specification (transcription factors Tbr1, Lhx2 and Emx1/2) and migration (reelin and Cdk5). Reelin, a critical cue for migration in the neocortex, and Cdk5, which is specifically required for migration along radial glia in the neocortex, were both selectively required for the normal migration of the CAS, but not for that of other amygdaloid nuclei. This is first evidence of a dorsal pallial contribution to the amygdala, demonstrating a developmental and mechanistic link between the amygdala and the neocortex.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/genética , Quinase 5 Dependente de Ciclina/metabolismo , Eletroporação/métodos , Embrião de Mamíferos , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo
2.
Dev Biol ; 306(2): 703-13, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17493606

RESUMO

The thalamocortical tract is the primary source of sensory information to the cerebral cortex, but the mechanisms regulating its pathfinding are not completely understood. LIM-homeodomain (LIM-HD) gene Lhx2 has been proposed to participate in a combinatorial "code" to regulate dorsal thalamic patterning and also the topography of thalamocortical projections. Here, we report that Lhx2-/- embryos exhibit a gross disruption in the early development of the thalamocortical tract, such that thalamic axons are unable to enter the ventral telencephalon. A possible cause for this deficit is a severe reduction of "pioneer" cells in the mutant ventral telencephalon that constitutes a putative mechanism for guiding the entry of the thalamocortical tract into this structure in vivo. However, in vitro, the thalamocortical tract is able to enter the ventral telencephalon, and this permitted an examination of whether thalamocortical topography is normal in the Lhx2 mutant. Contrary to hypotheses that proposed a cell-autonomous role for Lhx2 in the thalamus, Lhx2-/- thalamic explants generate a normal topography of projections in control ventral telencephalic preparations. This is consistent with our findings of normal patterning of the Lhx2 mutant dorsal thalamus using a wide array of markers. In the reverse experiment, however, control thalamic explants display aberrant topography in Lhx2-/- telencephalic preparations. This perturbation is restricted to projections from caudal thalamic explants, while rostral and middle explants project normally. Thus Lhx2 is required for multiple steps in thalamocortical tract pathfinding, but these functions appear localized in the ventral telencephalon rather than in the dorsal thalamic neurons. Furthermore, the absence of Lhx2 in the ventral telencephalon selectively disrupts a subset of thalamic axon topography, indicating a specific rather than a general perturbation of cues in this structure.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Tálamo/metabolismo , Fatores de Transcrição/fisiologia , Animais , Axônios/metabolismo , Padronização Corporal , Feminino , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Proteínas com Homeodomínio LIM , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Semaforinas/metabolismo , Telencéfalo/metabolismo , Tálamo/embriologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
Dev Biol ; 289(1): 141-51, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16309667

RESUMO

The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.


Assuntos
Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Núcleos Septais/embriologia , Telencéfalo/embriologia , Animais , Axônios/fisiologia , Fator 8 de Crescimento de Fibroblasto/análise , Fator 8 de Crescimento de Fibroblasto/metabolismo , Heterozigoto , Camundongos , Camundongos Mutantes , Mutação , Neuroglia/citologia , Neurônios/citologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/análise , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Núcleos Septais/anormalidades , Núcleos Septais/química , Transdução de Sinais , Telencéfalo/anormalidades , Telencéfalo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...