Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 237(11): 1275-1286, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969107

RESUMO

A critical missing component in the study of real-world falls is the ability to accurately determine impact forces resulting from the fall. Subject-specific rigid body dynamic (RBD) models calibrated to video captured falls can quantify impact forces and provide additional insights into injury risk factors. RBD models were developed based on five backward falls captured on surveillance video in long-term care facilities in British Columbia, Canada. Model joint stiffness and initial velocities were calibrated to match the kinematics of the fall and contact forces were calculated. The effect of joint stiffnesses (neck, lumbar spine, hip, and knee joint) on head contact forces were determined by modifying the calibrated stiffness values ±25%. Fall duration, fall trajectories, and maximum velocities showed a close match between fall events and simulations. The maximum value of pelvic velocity difference between Kinovea (an open-source software 2D digitization software) and Madymo multibody modeling was found to be 6% ± 21.58%. Our results demonstrate that neck and hip stiffness values have a non-significant yet large effect on head contact force (t(3) = 1, p = 0.387 and t(3) = 2, p = 0.138), while lower effects were observed for knee stiffness, and the effect of lumbar spine stiffness was negligible. The subject-specific fall simulations constructed from real world video captured falls allow for direct quantification of force outcomes of falls and may have applications in improving the assessment of fall-induced injury risks and injury prevention methods.


Assuntos
Pescoço , Pelve , Fenômenos Biomecânicos , Fatores de Risco
2.
Front Pain Res (Lausanne) ; 4: 1225088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954067

RESUMO

Introduction: myoActivation® assessment utilizes systemized movement tests to assess for pain and limitations in motion secondary to myofascial dysfunction. myoActivation needling therapy resolves the myofascial components of pain and is associated with immediately observed changes in pain, flexibility, and range of motion. The principal aim of this feasibility study was to objectively characterize the kinematic metrics of upper and lower body motion before and after myoActivation movement tests and therapy. Methods: Five consecutive eligible adolescent participants considered appropriate for myoActivation were consented to receive their myoActivation intervention in a motion laboratory. Clinical motion analysis was used to measure the changes in maximum range of motion (maxROM) and maximum angular speed to maximum ROM (speedROM) of movement tests predicted to change. Metrics were analyzed to assess changes over specified time intervals - i) baseline to after initial myoActivation session, and ii) baseline to after complete myoActivation course. Each participant served as their own control. Results: We demonstrated objective evidence of improved maxROM and/or speedROM in 63% of the movement tests predicted to change after just one session of myoActivation and in 77% of movement tests predicted to change over the complete course of treatment. The myoActivation clinician observed positive change in 11/19 of movement tests across all patients, that were predicted to change after the initial myoActivation session; 81% of these positive changes were confirmed by the kinematic data. Discussion: Clinical motion analysis provides objective support to clinicians evaluating, treating, and teaching myofascial release. A larger, prospective clinical trial is warranted to explore the impact of myoActivation on movement. Refinement of observation techniques and outcome measures established in this feasibility study will strengthen future clinical motion analysis of the myoActivation process.

3.
IEEE Int Conf Rehabil Robot ; 2017: 1574-1579, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28814044

RESUMO

BACKGROUND: Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. In particular, challenges related to travelling longer distances and transitioning between using a wheelchair and exoskeleton walking may present significant deterrents to regular exoskeleton use. In an effort to remove these barriers, a combined exoskeleton-wheelchair concept ('COMBO') has been proposed, which aims to achieve the benefits of both these mobility technologies. Given the inherent importance of including user-stakeholder opinions when designing an assistive technology solution, a study was undertaken to explore the perspectives of wheelchair users and healthcare professionals on the proposed conceptual design of the COMBO. METHODS: An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend a COMBO for four potential reasons. Nine design features were rated and compared in terms of their importance. Content analysis was used to analyze data from an open-ended question regarding additional perceptions about using or recommending a COMBO. RESULTS: A total of 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. Potential health benefits was the most highly rated reason for potential use or recommendation of a COMBO. Of the 9 design features, 2 had a median rating of very important: inclusion of a fall-protection mechanism, and the ability for the operator to use their hands while standing. Qualitative findings indicated that health and physical benefits, use for daily life activities, and psychosocial benefits were important considerations in whether to use or recommend the COMBO. CONCLUSIONS: This study captures the opinions and perspectives of two stakeholder groups for an exoskeleton-wheelchair hybrid device. It also emphasizes the importance of fall-protection, hand-use capabilities and enabling functional activities. Findings from this study can be utilized to provide insight for the refinement of the COMBO concept, as well as to guide more general mobility device research and development.


Assuntos
Pessoas com Deficiência , Exoesqueleto Energizado , Pessoal de Saúde/estatística & dados numéricos , Dispositivos Eletrônicos Vestíveis , Cadeiras de Rodas , Atitude , Estudos Transversais , Pessoas com Deficiência/reabilitação , Pessoas com Deficiência/estatística & dados numéricos , Desenho de Equipamento , Humanos , Inquéritos e Questionários
4.
J Neurotrauma ; 33(18): 1685-95, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-26729511

RESUMO

During traumatic spinal cord injury (SCI), the spinal cord is subject to external displacements that result in damage of neural tissues. These displacements produce complex internal deformations, or strains, of the spinal cord parenchyma. The aim of this study is to determine a relationship between these internal strains during SCI and primary damage to spinal cord gray matter (GM) in an in vivo rat contusion model. Using magnetic resonance imaging and novel image registration methods, we measured three-dimensional (3D) mechanical strain in in vivo rat cervical spinal cord (n = 12) during an imposed contusion injury. We then assessed expression of the neuronal transcription factor, neuronal nuclei (NeuN), in ventral horns of GM (at the epicenter of injury as well as at intervals cranially and caudally), immediately post-injury. We found that minimum principal strain was most strongly correlated with loss of NeuN stain across all animals (R(2) = 0.19), but varied in strength between individual animals (R(2) = 0.06-0.52). Craniocaudal distribution of anatomical damage was similar to measured strain distribution. A Monte Carlo simulation was used to assess strain field error, and minimum principal strain (which ranged from 8% to 36% in GM ventral horns) exhibited a standard deviation of 2.6% attributed to the simulated error. This study is the first to measure 3D deformation of the spinal cord and relate it to patterns of ensuing tissue damage in an in vivo model. It provides a platform on which to build future studies addressing the tolerance of spinal cord tissue to mechanical deformation.


Assuntos
Contusões/patologia , Substância Cinzenta/patologia , Traumatismos da Medula Espinal/patologia , Estresse Mecânico , Animais , Substância Cinzenta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/diagnóstico por imagem
5.
Ann Biomed Eng ; 44(4): 1285-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26294007

RESUMO

The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.


Assuntos
Medula Cervical/diagnóstico por imagem , Medula Cervical/fisiopatologia , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Animais , Contusões/diagnóstico por imagem , Contusões/fisiopatologia , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Masculino , Ratos Sprague-Dawley , Estresse Mecânico
6.
J Neurotrauma ; 33(18): 1667-84, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671448

RESUMO

The objective of this study was to compare the long-term histological and behavioral outcomes after spinal cord injury (SCI) induced by one of three distinct biomechanical mechanisms: dislocation, contusion, and distraction. Thirty male Sprague-Dawley rats were randomized to incur a traumatic cervical SCI by one of these three clinically relevant mechanisms. The injured cervical spines were surgically stabilized, and motor function was assessed for the following 8 weeks. The spinal cords were then harvested for histologic analysis. Quantification of white matter sparing using Luxol fast blue staining revealed that dislocation injury caused the greatest overall loss of white matter, both laterally and along the rostrocaudal axis of the injured cord. Distraction caused enlarged extracellular spaces and structural alteration in the white matter but spared the most myelinated axons overall. Contusion caused the most severe loss of myelinated axons in the dorsal white matter. Immunohistochemistry for the neuronal marker NeuN combined with Fluoro Nissl revealed that the dislocation mechanism resulted in the greatest neuronal cell losses in both the ventral and dorsal horns. After the distraction injury mechanism, animals displayed no recovery of grip strength over time, in contrast to the animals subjected to contusion or dislocation injuries. After the dislocation injury mechanism, animals displayed no improvement in the grooming test, in contrast to the animals subjected to contusion or distraction injuries. These data indicate that different SCI mechanisms result in distinct patterns of histopathology and behavioral recovery. Understanding this heterogeneity may be important for the future development of therapeutic interventions that target specific neuropathology after SCI.


Assuntos
Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/patologia , Animais , Comportamento Animal , Contusões/complicações , Contusões/patologia , Fratura-Luxação/complicações , Fratura-Luxação/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Fraturas da Coluna Vertebral/complicações , Fraturas da Coluna Vertebral/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-25894327

RESUMO

Visualization and analysis of the rodent spinal cord subject to experimental spinal cord injury (SCI) has almost completely been limited to naked-eye observations, and a single measure of gross spinal cord motion due to injury. This study introduces a novel method which utilizes MRI to quantify the deformation of the rodent spinal cord due to imposed, clinically-relevant injuries - specifically, cervical contusion and dislocation mechanisms. The image registration methods were developed using the Advanced Normalization Tools package, which incorporate rigid, affine and deformable registration steps. The proposed method is validated against a fiducial-based, 'gold-standard' measure of spinal cord tissue motion. The validation analysis yielded accuracy (and precision) values of 62 µm (49 µm), 73 µm (79 µm) and 112 µm (110 µm), for the medio-lateral, dorso-ventral and cranio-caudal directions, respectively. The internal morphological change of the spinal cord has never before been quantified, experimentally. This study demonstrates the capability of this method and its potential for future application to in vivo rodent models of SCI.


Assuntos
Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Animais , Marcadores Fiduciais , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
8.
J Biomech Eng ; 136(9): 095001, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24825431

RESUMO

Rodent models of acute spinal cord injury (SCI) are often used to investigate the effects of injury mechanism, injury speed, and cord displacement magnitude, on the ensuing cascade of biological damage in the cord. However, due to its small size, experimental observations have largely been limited to the gross response of the cord. To properly understand the relationship between mechanical stimulus and biological damage, more information is needed about how the constituent tissues of the cord (i.e., gray and white matter) respond to injurious stimuli. To address this limitation, we developed a novel magnetic resonance imaging (MRI)-compatible test apparatus that can impose either a contusion-type or dislocation-type acute cervical SCI in a rodent model and facilitate MR-imaging of the cervical spinal cord in a 7 T MR scanner. In this study, we present the experimental performance parameters of the MR rig. Utilizing cadaveric specimens and static radiographs, we report contusion magnitude accuracy that for a desired 1.8 mm injury, a nominal 1.78 mm injury (SD = 0.12 mm) was achieved. High-speed video analysis was employed to determine the injury speeds for both mechanisms and were found to be 1147 mm/s (SD = 240 mm/s) and 184 mm/s (SD = 101 mm/s) for contusion and dislocation injuries, respectively. Furthermore, we present qualitative pilot data from a cadaveric trial, employing the MR rig, to show the expected results from future studies.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Traumatismos da Medula Espinal/etiologia , Animais , Modelos Animais de Doenças , Ratos , Ratos Sprague-Dawley
9.
J Neurotrauma ; 30(10): 869-83, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23360150

RESUMO

The majority of clinical spinal cord injuries (SCIs) are contusive and occur at the cervical level of the spinal cord. Most scientists and clinicians agree that the preclinical evaluation of novel candidate treatments should include testing in a cervical SCI contusion model. Because mice are increasingly used because of the availability of genetically engineered lines, we characterized a novel cervical hemicontusion injury in mice using the Infinite Horizon Spinal Cord Impactor (Precisions Systems & Instrumentation, Lexington, KY). In the current study, C57BL/6 mice received a hemicontusion injury of 75 kilodynes with or without dwell time in an attempt to elicit a sustained moderate-to-severe motor deficit. Hemicontusion injuries without dwell time resulted in sustained deficits of the affected forepaw, as revealed by a 3-fold decrease in usage during rearing, a ∼50% reduction in grooming scores, and retrieval of significantly fewer pellets on the Montoya staircase test. Only minor transient deficits were observed in grasping force. CatWalk analysis revealed reduced paw-print size and swing speed of the affected forelimb. Added dwell time of 15 or 30 sec significantly worsened behavioral outcome, and mice demonstrated minimal ability of grasping, paw usage, and overground locomotion. Besides worsening of behavioral deficits, added dwell time also reduced residual white and gray matter at the epicenter and rostral-caudal to the injury, including on the contralateral side of the spinal cord. Taken together, we developed and characterized a new hemicontusion SCI model in mice that produces sufficient and sustained impairments in gross and skilled forelimb function and produced primarily unilateral functional deficits.


Assuntos
Lesões do Pescoço/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Animais , Vértebras Cervicais , Força da Mão/fisiologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...