Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 182(3): 665-677, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32562118

RESUMO

PURPOSE: Circulating tumor DNA in plasma may present a minimally invasive opportunity to identify tumor-derived mutations to inform selection of targeted therapies for individual patients, particularly in cases of oligometastatic disease where biopsy of multiple tumors is impractical. To assess the utility of plasma DNA as a "liquid biopsy" for precision oncology, we tested whether sequencing of plasma DNA is a reliable surrogate for sequencing of tumor DNA to identify targetable genetic alterations. METHODS: Blood and biopsies of 1-3 tumors were obtained from 4 evaluable patients with advanced breast cancer. One patient provided samples from an additional 7 tumors post-mortem. DNA extracted from plasma, tumor tissues, and buffy coat of blood were used for probe-directed capture of all exons in 149 cancer-related genes and massively parallel sequencing. Somatic mutations in DNA from plasma and tumors were identified by comparison to buffy coat DNA. RESULTS: Sequencing of plasma DNA identified 27.94 ± 11.81% (mean ± SD) of mutations detected in a tumor(s) from the same patient; such mutations tended to be present at high allelic frequency. The majority of mutations found in plasma DNA were not found in tumor samples. Mutations were also found in plasma that matched clinically undetectable tumors found post-mortem. CONCLUSIONS: The incomplete overlap of genetic alteration profiles of plasma and tumors warrants caution in the sole reliance of plasma DNA to identify therapeutically targetable alterations in patients and indicates that analysis of plasma DNA complements, but does not replace, tumor DNA profiling. TRIAL REGISTRATION: Subjects were prospectively enrolled in trial NCT01836640 (registered April 22, 2013).


Assuntos
Neoplasias da Mama/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Mutação , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Metástase Neoplásica , Prognóstico
2.
Blood Adv ; 2(19): 2443-2451, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30266819

RESUMO

Proteasome inhibitors bortezomib, carfilzomib and ixazomib (approved by the US Food and Drug Administration [FDA]) induce remissions in patients with multiple myeloma (MM), but most patients eventually become resistant. MM and other hematologic malignancies express ubiquitous constitutive proteasomes and lymphoid tissue-specific immunoproteasomes; immunoproteasome expression is increased in resistant patients. Immunoproteasomes contain 3 distinct pairs of active sites, ß5i, ß1i, and ß2i, which are different from their constitutive ß5c, ß1c, and ß2c counterparts. Bortezomib and carfilzomib block ß5c and ß5i sites. We report here that pharmacologically relevant concentrations of ß5i-specific inhibitor ONX-0914 show cytotoxicity in MM cell lines similar to that of carfilzomib and bortezomib. In addition, increasing immunoproteasome expression by interferon-γ increases sensitivity to ONX-0914 but not to carfilzomib. LU-102, an inhibitor of ß2 sites, dramatically sensitizes MM cell lines and primary cells to ONX-0914. ONX-0914 synergizes with all FDA-approved proteasome inhibitors in MM in vitro and in vivo. Thus, immunoproteasome inhibitors, currently in clinical trials for the treatment of autoimmune diseases, should also be considered for the treatment of MM.


Assuntos
Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Biomarcadores , Bortezomib/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Mieloma Múltiplo/metabolismo , Oligopeptídeos/farmacologia
3.
Case Rep Oncol Med ; 2015: 620582, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380136

RESUMO

Lung cancer is the most common cause of cancer related mortality in men and women. Approximately 15% of lung cancers are small cell type. Chemotherapy and radiation are the mainstay treatments. Currently, the standard chemotherapy regimen includes platinum/etoposide. For extensive small cell lung cancer, irinotecan and cisplatin have also been used. Patients with relapsed small cell lung cancer have a very poor prognosis, and the morbidity increases with brain metastases. Approximately 10%-14% of small cell lung cancer patients exhibit brain metastases at the time of diagnosis, which increases to 50%-80% as the disease progresses. Mean survival with brain metastases is reported to be less than six months, thus calling for improved regimens. Here we present a case series of patients treated with irinotecan for progressive brain metastases in small cell lung cancer, which serves as a reminder of the role of systemic chemotherapy in this setting.

4.
J Natl Med Assoc ; 102(11): 1000-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21141287

RESUMO

The formation of deoxyhemoglobin S (deoxy-Hb S) polymers is the key triggering event for the complex pathophysiologic manifestations of sickle cell anemia (SCA). This polymer formation is associated with a marked right-shifted oxyhemoglobin dissociation curve (decreased affinity, increased P50), which results in a decrease in arterial oxygen saturation (SaO2. There is a delay period ("delay time") from the formation of deoxy-Hb S to polymerization that is markedly sensitive (to the power of 30-40) to the concentration and solubility changes of deoxy-Hb S. Deoxy-Hb S polymer formation leads to sickle cell vaso-occlusion, a unique characteristic of SCA. This theoretical study, which views SCA as a disease of oxygen transport, provides a novel framework to suggest that a small to modest increase in cardiac index (by decreasing the P50 and thus increasing the SaO2) could change the distribution of the delay times (sec) such that the balance between occlusion and opening of microcirculatory vessels is shifted favoring the opening of these vessels, therefore disfavoring vaso-occlusion. Our approach integrates a mathematical model of oxygen transport in SCA with: (1) the expression relating the solubility of deoxy-Hb S to SaO2, and (2) the kinetic expression relating the delay time to the solubility of deoxy-Hb S.


Assuntos
Anemia Falciforme/prevenção & controle , Anemia Falciforme/fisiopatologia , Coração/fisiopatologia , Hemodinâmica/fisiologia , Hemoglobina Falciforme/metabolismo , Oxigênio/metabolismo , Doença Aguda , Adolescente , Adulto , Transporte Biológico , Criança , Feminino , Humanos , Masculino , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...