Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Neurobiol ; 4: 100081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919010

RESUMO

Quantifying olfactory impairments can facilitate early detection of Coronavirus disease 2019 (COVID-19). Despite being a debated topic, many reports provide evidence for the neurotropism of SARS-CoV-2. However, a sensitive, specific, and accurate non-invasive method for quantifying persistent neurological impairments is missing to date. To quantify olfactory detectabilities and neurocognitive impairments in symptomatic COVID-19 patients during and post-infection periods, we used a custom-built olfactory-action meter (OAM) providing accurate behavioral readouts. Ten monomolecular odors were used for quantifying olfactory detectabilities and two pairs of odors were employed for olfactory matching tests. We followed cohorts of healthy subjects, symptomatic patients, and recovered subjects for probing olfactory learning deficits, before the Coronavirus Omicron variant was reported in India. Our method identifies severe and persistent olfactory dysfunctions in symptomatic patients during COVID-19 infection. Symptomatic patients and recovered subjects showed significant olfactory learning deficits during and post-infection periods, 4-18 months, in comparison to healthy subjects. On comparing olfactory fitness, we found differential odor detectabilities and olfactory function scores in symptomatic patients and asymptomatic carriers. Our results indicate probable long-term neurocognitive deficits in COVID-19 patients imploring the necessity of long-term tracking during post-infection period. Differential olfactory fitness observed in symptomatic patients and asymptomatic carriers demand probing mechanisms of potentially distinct infection routes.

2.
EClinicalMedicine ; 28: 100575, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33083773

RESUMO

BACKGROUND: COVID-19 threatens the global community because a large fraction of infected people are asymptomatic, yet can effectively transmit SARS-CoV-2. Finding and isolating these silent carriers is a crucial step in confining the spread of the disease. A sudden loss of the sense of smell has been self-reported by COVID-19 patients across different countries, consistent with expression of the molecular factors mediating SARS-CoV-2 uptake into human olfactory epithelial supporting cells. However, precise quantification of olfactory loss in asymptomatic COVID-19 carriers is missing to date. METHODS: To quantify olfactory functions in asymptomatic COVID-19 patients, we designed an olfactory-action meter that determines detectability indices at different odor concentrations and an olfactory matching accuracy score using monomolecular odors. The optimization of test parameters allowed us to reliably and accurately assess olfactory deficits in a patient within 20 minutes. FINDINGS: Measurement of detection indices at low concentrations revealed a 50% reduction in asymptomatic COVID-19 carriers. Further, patients with better detection scores showed significantly reduced olfactory matching accuracies compared to normal healthy subjects. Our quantification of olfactory loss, considering all parameters, identified 82% of the asymptomatic SARS-CoV-2 carriers with olfactory deficits. However, on subjective evaluation, only 15% of the patients noticed a compromised ability to smell. INTERPRETATION: Compromised olfactory fitness can serve as a strong basis for identifying asymptomatic COVID-19 patients. Detailed design specifications and protocols provided here should enable the development of a sensitive, fast, and economical screening strategy that can be administered to large populations to prevent the rapid spread of COVID-19. FUNDING: This work was supported by the DBT - Wellcome Trust India Alliance intermediate grant (IA/I/14/1/501,306 to N.A.) and UGC NET Fellowship (A.B.). All the funding sources played no roles in the study.

3.
Microbiol Res ; 231: 126354, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31678651

RESUMO

Quorum sensing (QS) in rhizobia regulates diverse processes determining the success and efficiency of association with the legume host. Despite the notable importance of QS as well as the well-known underlying variability in the genomic and metabolic components thereof, its study in rhizobia is largely restricted to few laboratory strains. In this work, QS phenomenon in the rhizobia nodulating pigeon pea- one of the most important legume crops of the global-south, is characterized. Using 16S rRNA and recombinaseA sequencing analysis, the selected QS-positive and host-beneficial isolates were identified to be taxonomically affiliated to the genus Ensifer. Their QS components, including homologues of QS genes, and the repertoire of N-acyl homoserine lactone (AHL) autoinducers were identified. Sequences of the QS homologues showed significant variabilities ranging from 10 to >20% with the known Ensifer sequences. Autoinducer profiling using LC-MS/MS revealed the production of long and short chain AHLs variably by the isolates, including 3-oxo-C12-homoserine lactone (3-O-C12-HSL) and 3-OH-C16-HSL as their first report in Rhizobiaceae. Motility and attachment- two of the most crucial traits for effective establishment on host roots were discovered to be QS dependent in in vitro analysis and the same was confirmed using expression analysis of their regulatory genes using qRT-PCR; both revealing a QS mediated repression of motility and promotion of attachment. This study highlights that Ensifer nodulating pigeon pea, although with significant variance in the anatomy of their QS components, regulate symbiotically crucial cell-processes via QS in a scheme that is conserved in multiple genera.


Assuntos
4-Butirolactona/análogos & derivados , Cajanus/microbiologia , Nodulação , Percepção de Quorum , Sinorhizobium , 4-Butirolactona/química , 4-Butirolactona/genética , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Cajanus/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Filogenia , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , RNA Ribossômico 16S , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/metabolismo , Sinorhizobium/isolamento & purificação , Sinorhizobium/metabolismo , Simbiose
4.
Cell Rep ; 28(11): 2966-2978.e5, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509755

RESUMO

The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.


Assuntos
Comportamento Animal/fisiologia , Discriminação Psicológica/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Animais , Discriminação Psicológica/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Tempo de Reação/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...