Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(2-1): 024412, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932582

RESUMO

Mouse ultrasonic vocalizations (USVs) are of communicative significance and can serve as one of the major tools for behavioral phenotyping in mouse models of neurological disorders with social communication deficits. Understanding and identifying the mechanisms and role of laryngeal structures in generating USVs is crucial to understanding neural control of its production, which is likely dysfunctional in communication disorders. Although mouse USV production is accepted to be a whistle-based phenomenon, the class of whistle is debatable. Contradictory accounts exist on the role of a specific rodent intralaryngeal structure-the ventral pouch (VP), an air-sac-like cavity, and its cartilaginous edge. Also, inconsistencies in the spectral content of fictive USVs and real USVs in models without the VP points us to re-examine the role of the VP. We use an idealized structure, based on previous studies, to simulate a two-dimensional model of the mouse vocalization apparatus with the VP and without the VP. Our simulations were performed using comsol Multiphysics to examine characteristics of vocalizations beyond the peak frequency (f_{p}), like pitch jumps, harmonics, and frequency modulations, important in context-specific USVs. We successfully reproduced some of the crucial aspects of mouse USVs mentioned above, as observed through the spectrograms of simulated fictive USVs. Conclusions about the lack of a role of the mouse VP were previously made in studies primarily examining f_{p}. We investigated the impact of the intralaryngeal cavity and the alar edge on the simulated USV features beyond f_{p}. For the same combinations of parameters, removing the ventral pouch resulted in an alteration of the call characteristics, dramatically removing the variety of calls observed otherwise. Our results thus provide evidence supporting the hole-edge mechanism and the possible role of the VP in mouse USV production.


Assuntos
Ultrassom , Vocalização Animal , Camundongos , Animais , Modelos Animais de Doenças
2.
Langmuir ; 38(27): 8442-8455, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771505

RESUMO

The heat-dissipating capacity of a surface having micropillar wick structures, which resembles the evaporator section of a vapor chamber, is mainly limited by the liquid flow rate through the porous structure (permeability) and the capillary pressure gradient. The efficacy of a regular vapor chamber is determined from two parameters, namely, the dry-out heat flux and temperature of the evaporator surface. These two parameters possess a counter relation to each other. The work described herein introduces and evaluates the performance of a novel idea of electro-osmosis-aided thin-film evaporation from a micropillar array structure. This study is conducted using a discretized approach that is validated against the thin-film evaporation model and additionally the electro-osmotic flow model with pre-existing pressure gradient conditions. The unique feature of this approach is that it results in an increment in the magnitude of dry-out heat flux without significantly changing the surface temperature, wherein the increase in permeability is due to the addition of electro-osmotic flow. This comprehensive model considers various geometries, zeta potentials, and extremal electric fields and establishes the beneficial effects of the application of an external electric field. The results are used to predict the sensitivity and the dependence of the dry-out heat flux and the evaporator surface temperature on these parameters. For a host of electro-osmotic parameters considered herein, a maximum increment of up to 320% in the dry-out heat flux is observed for an external electric field of 105 V/m. The study, therefore, conclusively demonstrates the beneficial impact of electro-osmosis in enhancing the dry-out heat flux without any significant Joule heating.

3.
Anal Chem ; 92(1): 838-844, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769657

RESUMO

We demonstrate a method of concentrating and patterning of biological cells on a chip, exploiting the confluence of electric and thermal fields, without necessitating the use of any external heating or illuminating sources. The technique simply employs two parallel plate electrodes and an insulating layer over the bottom electrode, with a drilled insulating layer for inducing localized variations in the thermal field. A strong induced electric field, in the process, penetrates through the narrow hole and generates highly nonuniform heating, which in turn, results in gradients in electrical properties and induces mobile charges to impose directional fluid flow. The toroidal vortices, induced by secondary electrokinetic forces originating out of temperature-dependent electrical property variations, transport the suspended cells toward a hot-spot site of the chip, for rapid concentrating and patterning into different shaped clusters based on predesigned conditions, without exceeding safe temperature limits that do not result in damage of thermally labile biological samples. We characterize the efficacy of the cell trapping process for two different biological entities, namely, Escherichia coli bacteria and yeast cells. These results have importance toward developing biomedical microdevices for drug discovery, antibiotic resistance assessment, and medical diagnostics.


Assuntos
Dispositivos Lab-On-A-Chip , Análise Serial de Tecidos/instrumentação , Condutividade Elétrica , Eletricidade , Eletrodos , Desenho de Equipamento , Escherichia coli/citologia , Temperatura Alta , Temperatura , Leveduras/citologia
4.
Electrophoresis ; 40(22): 2971-2978, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424093

RESUMO

We explore a simple strategy of generating strong rotating flow in a stationary surface-droplet, using an intricate interplay of local electrical and thermal fields. Wire electrodes are employed to generate on-spot heating without necessitating any elaborate micro-fabrication, which causes strong local gradients in electrical properties to induce mobile charges into the droplet. Applying a low voltage (∼10 V), strong rotational velocity of the order of mm/s can be achieved in the system, within the standard operating ranges of operating and geometrical parameters. Further, altering the diameter of the electrode, vortices can be tuned locally or globally in low power budget, without incurring any droplet oscillations. These results may turn out to be of immense consequence in enhancing micromixing in a plethora of droplet based applications ranging from thermal management to medical diagnostics to be potentially employed in resource-limited settings.


Assuntos
Eletrodos , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Teóricos , Condutividade Elétrica , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/métodos , Rotação , Propriedades de Superfície , Temperatura , Viscosidade
5.
Biomicrofluidics ; 13(1): 014113, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30867883

RESUMO

We develop an electrokinetic technique that continuously manipulates colloidal particles to concentrate into patterned particulate groups in an energy efficient way, by exclusive harnessing of the intrinsic Joule heating effects. Our technique exploits the alternating current electrothermal flow phenomenon which is generated due to the interaction between non-uniform electric and thermal fields. Highly non-uniform electric field generates sharp temperature gradients by generating spatially-varying Joule heat that varies along the radial direction from a concentrated point hotspot. Sharp temperature gradients induce a local variation in electric properties which, in turn, generate a strong electrothermal vortex. The imposed fluid flow brings the colloidal particles at the centre of the hotspot and enables particle aggregation. Furthermore, maneuvering structures of the Joule heating spots, different patterns of particle clustering may be formed in a low power budget, thus opening up a new realm of on-chip particle manipulation process without necessitating a highly focused laser beam which is much complicated and demands higher power budget. This technique can find its use in Lab-on-a-chip devices to manipulate particle groups, including biological cells.

6.
Soft Matter ; 13(37): 6377-6389, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28868537

RESUMO

In this paper, we report the results of our numerical study on incompressible flow of a binary system of two immiscible fluids in a parallel plate capillary using alternating current electrothermal kinetics as the actuation mechanism for flow. The surfaces of the capillary are wetted with two different alternating wettability patches. The dynamic motion of the interface of the two fluids is tracked using a phase-field order parameter-based approach. The results exhibit a stick-slip behavior involving acceleration and deceleration of the interface due to the interplay of electrothermal (Coulomb and dielectric) and surface tension forces. Controlling the interface motion through effective tuning of the chemical characteristics of the surfaces and forcing parameters was explored in detail. Finally, we were able to find a critical value of the dimensionless strength of the alternating current electrothermal force above which the interface "breaks", resulting in the formation of isolated droplets. These results have the potential to improve fundamental understanding and design optimization of various biomedical and physiological systems that involve flow of two or more immiscible fluids over chemically wetted surfaces.

7.
Electrophoresis ; 38(9-10): 1310-1317, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28256732

RESUMO

In this paper, we investigate a novel alternating current electrothermal (ACET) micromixer driven by a high efficiency ACET micropump. The micromixer consists of thin film asymmetric pairs of electrodes on the microgrooved channel floor and array of electrode pairs fabricated on the top wall. By connecting electrodes with AC voltage, ACET forces are induced. Asymmetric microgrooved electrodes force the fluids along the channel, while lateral vortex pairs are generated by symmetric electrode pairs located on the top wall. Waviness of the floor increases contact area between two confluent streams within a narrow confinement. An active mixer operates as a semi active semi passive mixer. Effects of various parameters are investigated in details in order to arrive at an optimal configuration that provides for efficient mixing as well as appreciable transport. It is found that using a specific design, uniform and homogeneous mixing quality with mixing efficiency of 97.25% and flow rate of 1.794µm2/ min per unit width of the channel can be achieved.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Pesquisa Biomédica , Simulação por Computador , Eletrodos , Desenho de Equipamento
8.
Sci Rep ; 7: 42917, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218304

RESUMO

In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...