Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(7): e18220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509751

RESUMO

Recent advancements in neuroendocrinology challenge the long-held belief that hormonal effects are confined to perivascular tissues and do not extend to the central nervous system (CNS). This paradigm shift, propelled by groundbreaking research, reveals that synthetic hormones, notably in anti-inflammatory medications, significantly influence steroid psychosis, behavioural, and cognitive impairments, as well as neuropeptide functions. A seminal development in this field occurred in 1968 with McEven's proposal that rodent brains are responsive to glucocorticoids, fundamentally altering the understanding of how anxiety impacts CNS functionality and leading to the identification of glucocorticosteroids and mineralocorticoids as distinct corticotropic receptors. This paper focuses on the intricate roles of the neuroendocrine, immunological, and CNS in fostering stress resilience, underscored by recent animal model studies. These studies highlight active, compensatory, and passive strategies for resilience, supporting the concept that anxiety and depression are systemic disorders involving dysregulation across both peripheral and central systems. Resilience is conceptualized as a multifaceted process that enhances psychological adaptability to stress through adaptive mechanisms within the immunological system, brain, hypothalamo-pituitary-adrenal axis, and ANS Axis. Furthermore, the paper explores oxidative stress, particularly its origin from the production of reactive oxygen species (ROS) in mitochondria. The mitochondria's role extends beyond ATP production, encompassing lipid, heme, purine, and steroidogenesis synthesis. ROS-induced damage to biomolecules can lead to significant mitochondrial dysfunction and cell apoptosis, emphasizing the critical nature of mitochondrial health in overall cellular function and stress resilience. This comprehensive synthesis of neuroendocrinological and cellular biological research offers new insights into the systemic complexity of stress-related disorders and the imperative for multidisciplinary approaches in their study and treatment.


Assuntos
Doenças Mitocondriais , Resiliência Psicológica , Animais , Espécies Reativas de Oxigênio , Sistema Nervoso Central , Estresse Oxidativo , Estresse Psicológico
2.
Parkinsonism Relat Disord ; 115: 105799, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633805

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Although the exact etiology of PD remains elusive, growing evidence suggests a complex interplay of genetic, environmental, and lifestyle factors in its development. Despite advances in pharmacological interventions, current treatments primarily focus on managing symptoms rather than altering the disease's underlying course. In recent years, natural phytocompounds have emerged as a promising avenue for PD management. Phytochemicals derived from plants, such as phenolic acids, flavones, phenols, flavonoids, polyphenols, saponins, terpenes, alkaloids, and amino acids, have been extensively studied for their potential neuroprotective effects. These bioactive compounds possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anti-apoptotic, and anti-aggregation activities, which may counteract the neurodegenerative processes in PD. This comprehensive review delves into the pathophysiology of PD, with a specific focus on the roles of oxidative stress, mitochondrial dysfunction, and protein malfunction in disease pathogenesis. The review collates a wealth of evidence from preclinical studies and in vitro experiments, highlighting the potential of various phytochemicals in attenuating dopaminergic neuron degeneration, reducing α-synuclein aggregation, and modulating neuroinflammatory responses. Prominent among the natural compounds studied are curcumin, resveratrol, coenzyme Q10, and omega-3 fatty acids, which have demonstrated neuroprotective effects in experimental models of PD. Additionally, flavonoids like baicalein, luteolin, quercetin, and nobiletin, and alkaloids such as berberine and physostigmine, show promise in mitigating PD-associated pathologies. This review emphasizes the need for further research through controlled clinical trials to establish the safety and efficacy of these natural compounds in PD management. Although preclinical evidence is compelling, the translation of these findings into effective therapies for PD necessitates robust clinical investigation. Rigorous evaluation of pharmacokinetics, bioavailability, and potential drug interactions is imperative to pave the way for evidence-based treatment strategies. With the rising interest in natural alternatives and the potential for synergistic effects with conventional therapies, this review serves as a comprehensive resource for pharmaceutical industries, researchers, and clinicians seeking novel therapeutic approaches to combat PD. Harnessing the therapeutic potential of these natural phytocompounds may hold the key to improving the quality of life for PD patients and moving towards disease-modifying therapies in the future.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Qualidade de Vida , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neurônios Dopaminérgicos/patologia , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Gerenciamento Clínico
3.
Environ Pollut ; 329: 121718, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105464

RESUMO

Understanding the role of oxido-reductase enzymes followed by deciphering the functional genes and their corresponding proteins are crucial for the speculation of molecular mechanism for azo dye degradation. In the present study, decolourization efficiency of developed microbial consortium was tested using 100 mgL-1 reactive blue 13 (RB13) and the results showed ∼92.67% decolourization of RB13 at 48 h of incubation. The fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis were performed to identify the metabolites formed during RB13 degradation, followed by hypothesizing the metabolic pathway. The GC-MS analysis showed formation of 1,4-dihydronaphthalen-1-ol and 1,3,5-triazin-2-amine as the final degraded compounds after enzymatic breakdown of RB13 dye. The activity of different oxido-reductase enzymes was determined, and the results showed that NADH DCIP reductase and azo reductase had higher activity than other enzymes. It clearly indicated the degradation was initiated with the enzymatic cleavage of azo bond of RB13. Further, the functional genes were annotated against the database of clusters of orthologous groups (COGs) and kyoto encyclopedia of genes and genomes (KEGG). It provided valuable information about the role of crucial functional genes and their corresponding proteins correlated with dominant bacterial species in degradation of RB13. Hence, the present research is the first systematic study that correlated the formation of degradation compounds with the functional genes/enzymes and their corresponding bacterial species responsible for RB13 degradation.


Assuntos
Corantes , Consórcios Microbianos , Corantes/química , Biodegradação Ambiental , Compostos Azo/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Chemosphere ; 279: 130554, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873067

RESUMO

Desizing process in textile industry produces large volume of starch effluent. This carbon-rich waste can be used for resource recovery, such as the production of industrially useful enzymes. The present work assesses the usability of starch effluent from textile industry as an additional carbon source for enhanced production of α-amylase during solid-state fermentation (SSF) of agro-wastes by Trichoderma reesei. A significant increase (p ≤ 0.05) in α-amylase activity (25.48 ± 1.12 U mL-1) was observed with supplementation of starch effluent in SSF. Partial purification of α-amylase by 80% ammonium sulphate precipitation produced a yield of 58.39% enzyme with purification fold of 1.89. The enzyme was thermally stable at 40 °C with 90% residual activity after 5 h and 70% residual activity at 50 °C after 3 h. Using Michaelis-Menten kinetics analysis, the estimated Km and Vmax values for the partially purified α-amylase were found to be 2.55 mg mL-1 and 53.47 U mg-1, respectively. For the rapid assessment of the industrial application, desizing of the fabric was attempted. The cotton fabric was efficiently desized using α-amylase (at a concentration of 1% on the weight of fabric basis) at 80 °C. The present work demonstrates starch effluent from desizing process as a resource for the production of amylase. The amylase can further be used in the desizing process. With in-depth research, the work may lead to the development of a closed-loop, waste-recycling process for the textile industry.


Assuntos
Amido , alfa-Amilases , Amilases , Suplementos Nutricionais , Hypocreales , Temperatura , Indústria Têxtil
5.
J Health Pollut ; 10(26): 200610, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32509411

RESUMO

BACKGROUND: Industries such as electroplating, mining and battery production are major sources of heavy metal-rich waste entering nearby water bodies. Irrigation with heavy metal contaminated water can deteriorate soil quality as well as agricultural produce and have further toxic effects on human health. OBJECTIVES: The objective of the present study was to estimate the concentration of hazardous heavy metals such as chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn) and lead (Pb), as well as physico-chemical variables (pH, electrical conductivity, total dissolved solids, chemical oxygen demand and dissolved oxygen) at sampling locations along the Najafgarh and Loha mandi drains in Delhi, National Capital Region, India. METHODS: The present study evaluated the quality of wastewater from the Najafgarh and Loha mandi drains, which are used for irrigational purposes in the Delhi region. Drain water quality was monitored for a period of 2 years for physico-chemical variables (pH, chemical oxygen demand, electrical conductivity and dissolved oxygen) as well as heavy metal concentrations (Cr, Cu, Cd, Zn, Ni and Pb). The two-year monitoring period (July 2012-March 2014) was chosen to represent three seasons: pre-monsoon, monsoon, and post-monsoon. RESULTS: Varied concentrations of multiple heavy metals were found due to the extensive discharge of untreated industrial effluents into the drain water. Punjabi Bagh of Najafgarh drain was the most contaminated sampling site with the maximum concentration of Zn (12.040 ± 0.361 mg L-1), followed by Cr (2.436 ± 0.073mg L-1) and Cu (2.617 ± 0.078 mg L-1). CONCLUSIONS: Consumption of heavy metal-contaminated agricultural products can cause deleterious human health effects, leading to further health problems. The presence of multi-heavy metal ions above the Food and Agriculture Organization of the United Nations (FAO) permissible limits indicated that drain water was not suitable for irrigational purposes, and adequate measures are required to remove the heavy metal load from drain water. COMPETING INTERESTS: The authors declare no competing financial interests.

6.
Sci Total Environ ; 726: 137961, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32334349

RESUMO

Microalgae are recognized as a potential source of biomass for obtaining bioenergy. However, the lack of studies towards economic viability and environmental sustainability of the entire production chain limits its large-scale application. The use of wastewaters economizes natural resources used for algal biomass cultivation. However, desirable biomass characteristics for a good fuel may be impaired when wastewaters are used, namely low lipid content and high ash and protein contents. Thus, the choice of wastewaters with more favorable characteristics may be one way of obtaining a more balanced macromolecular composition of the algal biomass and therefore, a more suitable feedstock for the desired energetic route. The exploration of biorefinery concept and the use of wastewaters as culture medium are considered as the main strategic tools in the search of this viability. Considering the economics of overall process, direct utilization of wet biomass using hydrothermal liquefaction or hydrothermal carbonization and anaerobic digestion is recommended. Among the explored routes, anaerobic digestion is the most studied process. However, some main challenges remain as little explored, such as a low energy pretreatment and suitable and large-scale reactors for algal biomass digestion. On the other hand, thermochemical conversion routes offer better valorization of the algal biomass but have higher costs. A biorefinery combining anaerobic digestion, hydrothermal carbonization and hydrothermal liquefaction processes would provide the maximum possible output from the biomass depending on its characteristics. Therefore, the choice must be made in an integrated way, aiming at optimizing the quality of the final product to be obtained. Life cycle assessment studies are critical for scaling up of any algal biomass valorization technique for sustainability. Although there are limitations, suitable integrations of these processes would enable to make an economically feasible process which require further study.


Assuntos
Microalgas , Águas Residuárias , Biocombustíveis , Biomassa , Lipídeos , Plantas
7.
Biotechnol Biofuels ; 12: 178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31320926

RESUMO

BACKGROUND: Algal harvesting is a major cost which increases biofuel production cost. Algal biofuels are widely studied as third-generation biofuel. However, they are yet not viable because of its high production cost which is majorly contributed by energy-intensive biomass harvesting techniques. Biological harvesting method like fungal-assisted harvesting of microalgae is highly efficient but poses a challenge due to its slow kinetics and poorly understood mechanism. RESULTS: In this study, we investigate Aspergillus fumigatus-Chlorella pyrenoidosa attachment resulting in a harvesting efficiency of 90% within 4 h. To pinpoint the role of extracellular metabolite, several experiments were performed by eliminating the C. pyrenoidosa or A. fumigatus spent medium from the C. pyrenoidosa-A. fumigatus mixture. In the absence of A. fumigatus spent medium, the harvesting efficiency dropped to 20% compared to > 90% in the control, which was regained after addition of A. fumigatus spent medium. Different treatments of A. fumigatus spent medium showed drop in harvesting efficiency after periodate treatment (≤ 20%) and methanol-chloroform extraction (≤ 20%), indicating the role of sugar-like moiety. HR-LC-MS (high-resolution liquid chromatography-mass spectrometry) results confirmed the presence of N-acetyl-d-glucosamine (GlcNAc) and glucose in the spent medium. When GlcNAc was used as a replacement of A. fumigatus spent medium for harvesting studies, the harvesting process was significantly faster (p < 0.05) till 4 h compared to that with glucose. Further experiments indicated that metabolically active A. fumigatus produced GlcNAc from glucose. Concanavalin A staining and FTIR (Fourier transform infrared spectroscopy) analysis of A. fumigatus spent medium- as well as GlcNAc-incubated C. pyrenoidosa cells suggested the presence of GlcNAc on its cell surface indicated by dark red dots and GlcNAc-specific peaks, while no such characteristic dots or peaks were observed in normal C. pyrenoidosa cells. HR-TEM (High-resolution Transmission electron microscopy) showed the formation of serrated edges on the C. pyrenoidosa cell surface after treatment with A. fumigatus spent medium or GlcNAc, while Atomic force microscopy (AFM) showed an increase in roughness of the C. pyrenoidosa cells surface upon incubation with A. fumigatus spent medium. CONCLUSIONS: Results strongly suggest that GlcNAc present in A. fumigatus spent medium induces surface changes in C. pyrenoidosa cells that mediate the attachment to A. fumigatus hyphae. Thus, this study provides a better understanding of the A. fumigatus-assisted C. pyrenoidosa harvesting process.

8.
Bioresour Technol ; 244(Pt 1): 975-981, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847089

RESUMO

Fungal assisted algal harvesting is an attractive option for separating algae from bulk media. Although numerous studies have been reported in the recent time, no workable mathematical model has been developed for the same. In the present study, a mathematical model has been developed for fungal-assisted algal harvesting which shows that the process is not a second order process unlike other flocculation models. The process is also dependent on the radius of the algal cells and fungal pellets. Moreover, the flocculation process is affected by the velocity gradient of the system. The model was validated using different experiments viz. different fungal-algal ratio, variation in rpm, different algal strains, algae grown in different wastewaters and finally in a 10L photobioreactor. The proposed model is found to be in agreement with the experimental results along with r2>0.90 in most of the cases.


Assuntos
Fungos , Fotobiorreatores , Floculação , Modelos Teóricos , Águas Residuárias
9.
Bioresour Technol ; 218: 388-96, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27387415

RESUMO

Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi.


Assuntos
Beauveria/metabolismo , Biodegradação Ambiental , Metais Pesados/análise , Microbiologia da Água , Adsorção , Biomassa , Reatores Biológicos , Glucose/química , Concentração de Íons de Hidrogênio , Cinética , Metais/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Águas Residuárias , Purificação da Água/métodos
10.
Environ Monit Assess ; 187(1): 4146, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25410949

RESUMO

The present study assessed the quality of Yamuna River and the Najafgarh drain water for irrigational purposes in the Delhi region in terms of spatial variations in the physicochemical characteristics as well as heavy metal concentrations. The monitoring was done for the period July 2012-August 2013 representing pre-monsoon, monsoon, and post-monsoon sessions and considering six physicochemical parameters. Heavy metals such as cadmium, chromium, copper, nickel, zinc, and lead have been found in the river due to rampant discharge of industrial effluents into the river. The mean metal concentrations in the 15 sampling sites were in the range of (mg L(-1)) 0.02-0.64 (Cu), 0-0.42 (Cr), 0.13-2.22(Zn), 0.03-0.27 (Pb), 0-0.07 (Cd), and 0.01-0.13 (Ni). Multivariate statistics (PCA and HCA) were used to identify the possible sources of metal contamination and to examine the spatial changes in the Yamuna River as well as in the Najafgarh drain. This study reveals the occurrence of mean Cd concentration above the safe limit at Palla, Christian Ashram and Jagatpur of the Yamuna river while Punjabi Bagh of the Najafgarh drain necessitate treatment in terms of heavy metals such as Cd, Cu, Cr, Ni, Pb, and Zn before it could be rendered useful for irrigation.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Rios/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Irrigação Agrícola/métodos , Cidades , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...