Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(5)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663760

RESUMO

Graphene turns out to be the pioneering material for setting up boulevard to a new zoo of recently proposed carbon based novel two dimensional (2D) analogues. It is evident that their electronic, optical and other related properties are utterly different from that of graphene because of the distinct intriguing morphology. For instance, the revolutionary emergence of Dirac cones in graphene is particularly hard to find in most of the other 2D materials. As a consequence the crystal symmetries indeed act as a major role for predicting electronic band structure. Since tight binding calculations have become an indispensable tool in electronic band structure calculation, we indicate the implication of such method in graphene's allotropes beyond hexagonal symmetry. It is to be noted that some of these graphene allotropes successfully overcome the inherent drawback of the zero band gap nature of graphene. As a result, these 2D nanomaterials exhibit great potential in a broad spectrum of applications, viz nanoelectronics, nanooptics, gas sensors, gas storages, catalysis, and other specific applications. The miniaturization of high performance graphene allotrope based gas sensors to microscopic or even nanosized range has also been critically discussed. In addition, various optical properties like the dielectric functions, optical conductivity, electron energy loss spectra reveal that these systems can be used in opto-electronic devices. Nonetheless, the honeycomb lattice of graphene is not superconducting. However, it is proposed that the tetragonal form of graphene can be intruded to form new hybrid 2D materials to achieve novel superconducting device at attainable conditions. These dynamic experimental prospects demand further functionalization of these systems to enhance the efficiency and the field of multifunctionality. This topical review aims to highlight the latest advances in carbon based 2D materials beyond graphene from the basic theoretical as well as future application perspectives.

2.
Phys Chem Chem Phys ; 22(18): 10286-10294, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32356554

RESUMO

Two dimensional carbon allotropes with multiple atomic layers have attracted significant interest recently. In this work a new three atomic layer thick 2D carbon allotrope, twin T-graphene, is proposed. The sp2 hybridized dynamically stable phase is a nonmagnetic semiconducting material with an indirect band gap of 1.79 eV. Thermal stability investigations indicate that the material undergoes no change in the bonding pattern at 2000 K. The study of its mechanical properties indicates that it is an elastically isotropic soft material with low values of elastic constants. The electron mobility of the semiconductor is found to be nearly 375 cm2 V-1 s-1. The material when doped with single nitrogen in the tetragonal site undergoes a drastic change in its electronic properties and manifests itself in the form of a bipolar magnetic semiconductor which is a potential spintronic material. The study of the optical properties clearly indicates an optical gap of 1.89 eV. The material shows optical response in the visible range. Two sharp characteristic EELS peaks indicate the presence of this material. All these characteristics indicate that this material can have potential photocatalytic activity and be an attractive material for the applications in field effect transistors.

3.
Phys Chem Chem Phys ; 21(44): 24758-24767, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31681933

RESUMO

A novel sp2 hybridized planar 2D carbon allotrope consisting of tetra, penta and octagonal (TPO) rings is proposed in this work. Its thermodynamic stability is confirmed by molecular dynamics in the canonical ensemble at 600 K and the analysis shows that it can also remain stable at 1000 K. The mechanical stability of this material has been estimated by the Born-Huang criterion. Its in-plane stiffness constants are found to be 85% of that of graphene ensuring its high strength quality. The investigation of the electronic properties reveals that the material is metallic in nature with a Dirac cone at 3.7 eV above its Fermi level at an asymmetric position in the conduction band. The study of its optical property for parallel and perpendicular polarization yields the absence of any plasma frequency. Besides, its absorption is mostly spread within 10-20 eV. Further electrical transport study shows negative differential resistance (NDR) above 3.5 V for one nano device. Nano ribbons made out of a TPO-graphene sheet exhibit metallic character. When the porous sheet of TPO-graphene is exposed to Li and S atoms, it is found that the Li atoms pass through the pores unlike the S atoms owing to the less barrier energy compared to S atoms. Substitutional doping with boron and nitrogen at different sites of TPO-graphene showed splitting of the Dirac feature. Also suitable B and N doping brings about semiconducting properties with tunability in band gap with a maximum band gap of 1.09 eV for an isoelectronic structure. All these theoretical predictions might trigger further new avenues involving this novel TPO graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...