Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(8): 100, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958824

RESUMO

Establishing a mapping between the emergent biological properties and the repository of network structures has been of great relevance in systems and synthetic biology. Adaptation is one such biological property of paramount importance that promotes regulation in the presence of environmental disturbances. This paper presents a nonlinear systems theory-driven framework to identify the design principles for perfect adaptation with respect to external disturbances of arbitrary magnitude. Based on the prior information about the network, we frame precise mathematical conditions for adaptation using nonlinear systems theory. We first deduce the mathematical conditions for perfect adaptation for constant input disturbances. Subsequently, we translate these conditions to specific necessary structural requirements for adaptation in networks of small size and then extend to argue that there exist only two classes of architectures for a network of any size that can provide local adaptation in the entire state space, namely, incoherent feed-forward (IFF) structure and negative feedback loop with buffer node (NFB). The additional positiveness constraints further narrow the admissible set of network structures. This also aids in establishing the global asymptotic stability for the steady state given a constant input disturbance. The proposed method does not assume any explicit knowledge of the underlying rate kinetics, barring some minimal assumptions. Finally, we also discuss the infeasibility of certain IFF networks in providing adaptation in the presence of downstream connections. Moreover, we propose a generic and novel algorithm based on non-linear systems theory to unravel the design principles for global adaptation. Detailed and extensive simulation studies corroborate the theoretical findings.


Assuntos
Adaptação Fisiológica , Conceitos Matemáticos , Modelos Biológicos , Dinâmica não Linear , Biologia de Sistemas , Adaptação Fisiológica/fisiologia , Simulação por Computador , Retroalimentação Fisiológica , Biologia Sintética , Teoria de Sistemas , Cinética
2.
Methods Mol Biol ; 2760: 35-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468081

RESUMO

Establishing a mapping between (from and to) the functionality of interest and the underlying network structure (design principles) remains a crucial step toward understanding and design of bio-systems. Perfect adaptation is one such crucial functionality that enables every living organism to regulate its essential activities in the presence of external disturbances. Previous approaches to deducing the design principles for adaptation have either relied on computationally burdensome brute-force methods or rule-based design strategies detecting only a subset of all possible adaptive network structures. This chapter outlines a scalable and generalizable method inspired by systems theory that unravels an exhaustive set of adaptation-capable structures. We first use the well-known performance parameters to characterize perfect adaptation. These performance parameters are then mapped back to a few parameters (poles, zeros, gain) characteristic of the underlying dynamical system constituted by the rate equations. Therefore, the performance parameters evaluated for the scenario of perfect adaptation can be expressed as a set of precise mathematical conditions involving the system parameters. Finally, we use algebraic graph theory to translate these abstract mathematical conditions to certain structural requirements for adaptation. The proposed algorithm does not assume any particular dynamics and is applicable to networks of any size. Moreover, the results offer a significant advancement in the realm of understanding and designing complex biochemical networks.


Assuntos
Adaptação Biológica , Algoritmos , Modelos Biológicos
3.
Math Biosci ; 358: 108984, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804384

RESUMO

Biological adaptation, the tendency of every living organism to regulate its essential activities in environmental fluctuations, is a well-studied functionality in systems and synthetic biology. In this work, we present a generic methodology inspired by systems theory to discover the design principles for robust adaptation, perfect and imperfect, in two different contexts: (1) in the presence of deterministic external and parametric disturbances and (2) in a stochastic setting. In all the cases, firstly, we translate the necessary qualitative conditions for adaptation to mathematical constraints using the language of systems theory, which we then map back as design requirements for the underlying networks. Thus, contrary to the existing approaches, the proposed methodologies provide an exhaustive set of admissible network structures without resorting to computationally burdensome brute-force techniques. Further, the proposed frameworks do not assume prior knowledge about the particular rate kinetics, thereby validating the conclusions for a large class of biological networks. In the deterministic setting, we show that unlike the incoherent feed-forward network structures (IFFLP or opposer modules), the modules containing negative feedback with buffer action (NFBLB or balancer modules) are robust to parametric fluctuations when a specific part of the network is assumed to remain unaffected. To this end, we propose a sufficient condition for imperfect adaptation and show that adding negative feedback in an IFFLP topology improves the robustness concerning parametric fluctuations. Further, we propose a stricter set of necessary conditions for imperfect adaptation. Turning to the stochastic scenario, we adopt a Wiener-Kolmogorov filter strategy to tune the parameters of a given network structure towards minimum output variance. We show that both NFBLB and IFFLP can be used as a reduced-order W-K filter. Further, we define the notion of nearest neighboring motifs to compare the output variances across different network structures. We argue that the NFBLB achieves adaptation at the cost of a variance higher than its nearest neighboring motifs whereas the IFFLP topology produces locally minimum variance while compared with its nearest neighboring motifs. We present numerical simulations to support the theoretical results. Overall, our results present a generic, systematic, and robust framework for advancing the understanding of complex biological networks.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Cinética , Incerteza
4.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36222149

RESUMO

Network architecture plays a crucial role in governing the dynamics of any biological network. Further, network structures have been shown to remain conserved across organisms for a given phenotype. Therefore, the mapping between network structures and the output functionality not only aids in understanding of biological systems but also finds application in synthetic biology and therapeutics. Based on the approaches involved, most of the efforts hitherto invested in this field can be classified into three broad categories, namely, computational efforts, rule-based methods and systems-theoretic approaches. The present review provides a qualitative and quantitative study of all three approaches in the light of three well-researched biological phenotypes, namely, oscillation, toggle switching, and adaptation. We also discuss the advantages, limitations, and future research scope for all three approaches along with their possible applications to other emergent properties of biological relevance.


Assuntos
Biologia Computacional , Biologia de Sistemas , Biologia Computacional/métodos , Biologia de Sistemas/métodos
5.
PLoS Comput Biol ; 18(1): e1009769, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061660

RESUMO

Constructing biological networks capable of performing specific biological functionalities has been of sustained interest in synthetic biology. Adaptation is one such ubiquitous functional property, which enables every living organism to sense a change in its surroundings and return to its operating condition prior to the disturbance. In this paper, we present a generic systems theory-driven method for designing adaptive protein networks. First, we translate the necessary qualitative conditions for adaptation to mathematical constraints using the language of systems theory, which we then map back as 'design requirements' for the underlying networks. We go on to prove that a protein network with different input-output nodes (proteins) needs to be at least of third-order in order to provide adaptation. Next, we show that the necessary design principles obtained for a three-node network in adaptation consist of negative feedback or a feed-forward realization. We argue that presence of a particular class of negative feedback or feed-forward realization is necessary for a network of any size to provide adaptation. Further, we claim that the necessary structural conditions derived in this work are the strictest among the ones hitherto existed in the literature. Finally, we prove that the capability of producing adaptation is retained for the admissible motifs even when the output node is connected with a downstream system in a feedback fashion. This result explains how complex biological networks achieve robustness while keeping the core motifs unchanged in the context of a particular functionality. We corroborate our theoretical results with detailed and thorough numerical simulations. Overall, our results present a generic, systematic and robust framework for designing various kinds of biological networks.


Assuntos
Adaptação Biológica , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Biologia Sintética , Adaptação Biológica/genética , Adaptação Biológica/fisiologia , Biologia Computacional
6.
Methods Mol Biol ; 2189: 133-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33180299

RESUMO

The deduction of design principles for complex biological functionalities has been a source of constant interest in the fields of systems and synthetic biology. A number of approaches have been adopted, to identify the space of network structures or topologies that can demonstrate a specific desired functionality, ranging from brute force to systems theory-based methodologies. The former approach involves performing a search among all possible combinations of network structures, as well as the parameters underlying the rate kinetics for a given form of network. In contrast to the search-oriented approach in brute force studies, the present chapter introduces a generic approach inspired by systems theory to deduce the network structures for a particular biological functionality. As a first step, depending on the functionality and the type of network in consideration, a measure of goodness of attainment is deduced by defining performance parameters. These parameters are computed for the most ideal case to obtain the necessary condition for the given functionality. The necessary conditions are then mapped as specific requirements on the parameters of the dynamical system underlying the network. Following this, admissible minimal structures are deduced. The proposed methodology does not assume any particular rate kinetics in this case for deducing the admissible network structures notwithstanding a minimum set of assumptions on the rate kinetics. The problem of computing the ideal set of parameter/s or rate constants, unlike the problem of topology identification, depends on the particular rate kinetics assumed for the given network. In this case, instead of a computationally exhaustive brute force search of the parameter space, a topology-functionality specific optimization problem can be solved. The objective function along with the feasible region bounded by the motif specific constraints amounts to solving a non-convex optimization program leading to non-unique parameter sets. To exemplify our approach, we adopt the functionality of adaptation, and demonstrate how network topologies that can achieve adaptation can be identified using such a systems-theoretic approach. The outcomes, in this case, i.e., minimum network structures for adaptation, are in agreement with the brute force results and other studies in literature.


Assuntos
Algoritmos , Simulação por Computador , Modelos Biológicos , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...