Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177403

RESUMO

The aim of the peer-to-peer (P2P) decentralized gaming industry has shifted towards realistic gaming environment (GE) support for game players (GPs). Recent innovations in the metaverse have motivated the gaming industry to look beyond augmented reality and virtual reality engines, which improve the reality of virtual game worlds. In gaming metaverses (GMs), GPs can play, socialize, and trade virtual objects in the GE. On game servers (GSs), the collected GM data are analyzed by artificial intelligence models to personalize the GE according to the GP. However, communication with GSs suffers from high-end latency, bandwidth concerns, and issues regarding the security and privacy of GP data, which pose a severe threat to the emerging GM landscape. Thus, we proposed a scheme, Game-o-Meta, that integrates federated learning in the GE, with GP data being trained on local devices only. We envisioned the GE over a sixth-generation tactile internet service to address the bandwidth and latency issues and assure real-time haptic control. In the GM, the GP's game tasks are collected and trained on the GS, and then a pre-trained model is downloaded by the GP, which is trained using local data. The proposed scheme was compared against traditional schemes based on parameters such as GP task offloading, GP avatar rendering latency, and GS availability. The results indicated the viability of the proposed scheme.

2.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177564

RESUMO

Cardiac arrhythmia is a deadly disease that threatens the lives of millions of people, which shows the need for earlier detection and classification. An abnormal signal in the heart causing arrhythmia can be detected at an earlier stage when the health data from the patient are monitored using IoT technology. Arrhythmias may suddenly lead to death and the classification of arrhythmias is considered a complicated process. In this research, an effective classification model for the classification of heart disease is developed using flamingo optimization. Initially, the ECG signal from the heart is collected and then it is subjected to the preprocessing stage; to detect and control the electrical activity of the heart, the electrocardiogram (ECG) is used. The input signals collected using IoT nodes are collectively presented in the base station for the classification using flamingo-optimization-based deep convolutional networks, which effectively predict the disease. With the aid of communication technologies and the contribution of IoT, medical professionals can easily monitor the health condition of patients. The performance is analyzed in terms of accuracy, sensitivity, and specificity.


Assuntos
Arritmias Cardíacas , Redes Neurais de Computação , Humanos , Animais , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Aves , Frequência Cardíaca , Algoritmos , Processamento de Sinais Assistido por Computador
3.
IEEE Sens J ; 23(2): 955-968, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36913217

RESUMO

Recently, unmanned aerial vehicles (UAVs) are deployed in Novel Coronavirus Disease-2019 (COVID-19) vaccine distribution process. To address issues of fake vaccine distribution, real-time massive UAV monitoring and control at nodal centers (NCs), the authors propose SanJeeVni, a blockchain (BC)-assisted UAV vaccine distribution at the backdrop of sixth-generation (6G) enhanced ultra-reliable low latency communication (6G-eRLLC) communication. The scheme considers user registration, vaccine request, and distribution through a public Solana BC setup, which assures a scalable transaction rate. Based on vaccine requests at production setups, UAV swarms are triggered with vaccine delivery to NCs. An intelligent edge offloading scheme is proposed to support UAV coordinates and routing path setups. The scheme is compared against fifth-generation (5G) uRLLC communication. In the simulation, we achieve and 86% improvement in service latency, 12.2% energy reduction of UAV with 76.25% more UAV coverage in 6G-eRLLC, and a significant improvement of [Formula: see text]% in storage cost against the Ethereum network, which indicates the scheme efficacy in practical setups.

4.
Procedia Comput Sci ; 218: 1506-1515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743795

RESUMO

The Global Novel Coronavirus Disease-2019 (COVID-19) pandemic has forced social distancing norms that have been followed worldwide. Thus, traditional biometric-based attendance marking systems are replaced with contactless attendance marking schemes. However, there are limitations of manufacturing cost, spoofing attacks, and security vulnerabilities. Thus, the paper proposes a contactless camera-based attendance system with the equipped functionalities of anti-spoofing. The proposed scheme can detect liveliness, so fake attendance marking is eliminated. The proposed scheme is also scalable and cost-effective, with generic solutions adaptable to schools, colleges, or other places where attendance is required. The system also eliminates the limitation of one-entry by multiple face-marking systems that allow simultaneous attendance marking. In performance analysis, parameters like image precision, storage cost, retrieval latency, and analysis of the anti-spoofing module is presented against existing schemes. An accuracy of 95.85% is reported for the model, with a significant improvement of 33.52% in storage cost through the Firebase database, which outperforms existing state-of-the-art schemes.

5.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679684

RESUMO

Recently, with the massive growth of IoT devices, the attack surfaces have also intensified. Thus, cybersecurity has become a critical component to protect organizational boundaries. In networks, Intrusion Detection Systems (IDSs) are employed to raise critical flags during network management. One aspect is malicious traffic identification, where zero-day attack detection is a critical problem of study. Current approaches are aligned towards deep learning (DL) methods for IDSs, but the success of the DL mechanism depends on the feature learning process, which is an open challenge. Thus, in this paper, the authors propose a technique which combines both CNN, and GRU, where different CNN-GRU combination sequences are presented to optimize the network parameters. In the simulation, the authors used the CICIDS-2017 benchmark dataset and used metrics such as precision, recall, False Positive Rate (FPR), True Positive Rate (TRP), and other aligned metrics. The results suggest a significant improvement, where many network attacks are detected with an accuracy of 98.73%, and an FPR rate of 0.075. We also performed a comparative analysis with other existing techniques, and the obtained results indicate the efficacy of the proposed IDS scheme in real cybersecurity setups.


Assuntos
Aprendizado Profundo , Benchmarking , Segurança Computacional , Simulação por Computador
6.
IEEE Access ; 10: 74131-74151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345376

RESUMO

Recently, healthcare stakeholders have orchestrated steps to strengthen and curb the COVID-19 wave. There has been a surge in vaccinations to curb the virus wave, but it is crucial to strengthen our healthcare resources to fight COVID-19 and like pandemics. Recent researchers have suggested effective forecasting models for COVID-19 transmission rate, spread, and the number of positive cases, but the focus on healthcare resources to meet the current spread is not discussed. Motivated from the gap, in this paper, we propose a scheme, ABV-CoViD (Availibility of Beds and Ventilators for COVID-19 patients), that forms an ensemble forecasting model to predict the availability of beds and ventilators (ABV) for the COVID-19 patients. The scheme considers a region-wise demarcation for the allotment of beds and ventilators (BV), termed resources, based on region-wise ABV and COVID-19 positive patients (inside the hospitals occupying the BV resource). We consider an integration of artificial neural network (ANN) and auto-regressive integrated neural network (ARIMA) model to address both the linear and non-linear dependencies. We also consider the effective wave spread of COVID-19 on external patients (not occupying the BV resources) through a [Formula: see text]- ARNN model, which gives us long-term complex dependencies of BV resources in the future time window. We have considered the COVID-19 healthcare dataset on 3 USA regions (Illinois, Michigan, and Indiana) for testing our ensemble forecasting scheme from January 2021 to May 2022. We evaluated our scheme in terms of statistical performance metrics and validated that ensemble methods have higher accuracy. In simulation, for linear modelling, we considered the [Formula: see text] model, and [Formula: see text] model for ANN modelling. We considered the [Formula: see text](12,6) forecasting. On a population of 2,93,90,897, the obtained mean absolute error (MAE) on average for 3 regions is 170.5514. The average root means square error (RMSE) of [Formula: see text]-ARNN is 333.18, with an accuracy of 98.876%, which shows the scheme's efficacy in ABV measurement over conventional and manual resource allocation schemes.

7.
IEEE J Biomed Health Inform ; 26(5): 1997-2007, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388100

RESUMO

This paper proposes a generic scheme VaCoChain, that fuses blockchain (BC) and unmanned aerial vehicles (UAVs) underlying fifth-generation (5G) communication services for timely vaccine distribution during novel coronavirus (COVID-19) and future pandemics. The scheme offers 5G-tactile internet (5G-TI) based services for UAV communication networks (UAVCN) monitored through ground controller stations (GCs). 5G-TI enabled UAVCN supports real-time dense connectivity at ultra-low round-trip time (RTT) latency of [Formula: see text] and high availability of 99.99999%. Thus, it can support resilient vaccine distributions in a phased manner at government-designated nodal centers (NCs) with reduced round trip delays from vaccine production warehouses (VPW). Further, UAVCNs ensure minimizes human intervention and controls vaccine health conditions due to shorter trip times. Once vaccines are supplied at NCs warehouses, then the BC ensures timestamped documentation of vaccinated persons with chronology, auditability, and transparency of supply-chain checkpoints from VPW to NCs. Through smart contracts (SCs), priority groups can be formed for vaccination based on age, healthcare workers, and general commodities. In the simulation, for UAV efficacy, we have compared the scheme against fourth-generation (4G)-assisted long term evolution-advanced (LTE-A), orthogonal frequency division multiplexing (OFDM) channels, and traditional logistics for round-trip time (RTT) latency, logistics, and communication costs. In the BC setup, we have compared the scheme against the existing 5G-TI delivery scheme (Gupta et al.) for processing latency, packet losses, and transaction time. For example, in communication costs, the proposed scheme achieves an average improvement of 9.13 for block meta-information. For 4000 transactions, the proposed scheme has a communication latency of 16 s compared to 36 s. The packet loss is significantly reduced to 2.5% using 5G-TI compared to 16% in 4G-LTE-A. The proposed scheme has a computation cost of 1.6 ms and a communication cost of 157 bytes, which indicates the scheme efficacy against conventional approaches.


Assuntos
Blockchain , COVID-19 , Vacinas , COVID-19/prevenção & controle , Simulação por Computador , Humanos , Pandemias/prevenção & controle
8.
IEEE J Biomed Health Inform ; 26(5): 1937-1948, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34260362

RESUMO

Healthcare big data (HBD) allows medical stakeholders to analyze, access, retrieve personal and electronic health records (EHR) of patients. Mostly, the records are stored on healthcare cloud and application (HCA) servers, and thus, are subjected to end-user latency, extensive computations, single-point failures, and security and privacy risks. A joint solution is required to address the issues of responsive analytics, coupled with high data ingestion in HBD and secure EHR access. Motivated from the research gaps, the paper proposes a scheme, that integrates blockchain (BC)-based confidentiality-privacy (CP) preserving scheme, CP-BDHCA, that operates in two phases. In the first phase, elliptic curve cryptographic (ECC)-based digital signature framework, HCA-ECC is proposed to establish a session key for secure communication among different healthcare entities. Then, in the second phase, a two-step authentication framework is proposed that integrates Rivest-Shamir-Adleman (RSA) and advanced encryption standard (AES), named as HCA-RSAE that safeguards the ecosystem against possible attack vectors. CP-BDAHCA is compared against existing HCA cloud applications in terms of parameters like response time, average delay, transaction and signing costs, signing and verifying of mined blocks, and resistance to DoS and DDoS attacks. We consider 10 BC nodes and create a real-world customized dataset to be used with SEER dataset. The dataset has 30,000 patient profiles, with 1000 clinical accounts. Based on the combined dataset the proposed scheme outperforms traditional schemes like AI4SAFE, TEE, Secret, and IIoTEED, with a lower response time. For example, the scheme has a very less response time of 300 ms in DDoS. The average signing cost of mined BC transactions is 3,34 seconds, and for 205 transactions, has a signing delay of 1405 ms, with improved accuracy of ≈ 12% than conventional state-of-the-art approaches.


Assuntos
Blockchain , Big Data , Segurança Computacional , Confidencialidade , Atenção à Saúde , Ecossistema , Registros Eletrônicos de Saúde , Humanos , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...