Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(29): 6072-6083, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39011742

RESUMO

The Bethe-Salpeter equation using the GW approximation to the self-energy (BSE@GW) is a computationally attractive method for studying electronic excitation from first principles within the many-body Green's function theory framework. We examine its dependence on the underlying exchange-correlation (XC) approximation as well as on the GW approximation for predicting the charge transfer exciton formation at representative type-II interfaces between molecular systems of tetrachloro-1,2-benzoquinone (TCBQ) and acene derivatives. For the XC approximation, we consider several widely used generalized gradient approximation (GGA) and hybrid GGA functionals. For the GW self-energy approximation, we examine the recently proposed renormalized singles approach by Yang and coauthors [J. Phys. Chem. Lett. 2019, 10 (3), 447-452; J. Chem. Theory Comput. 2022, 18, 7570-7585] in addition to other commonly employed approximated GW schemes. We demonstrate a reliable prediction of the charge transfer exciton within the BSE@GW level of theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...