Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7520, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553492

RESUMO

The consumption of water constitutes the physical health of most of the living species and hence management of its purity and quality is extremely essential as contaminated water has to potential to create adverse health and environmental consequences. This creates the dire necessity to measure, control and monitor the quality of water. The primary contaminant present in water is Total Dissolved Solids (TDS), which is hard to filter out. There are various substances apart from mere solids such as potassium, sodium, chlorides, lead, nitrate, cadmium, arsenic and other pollutants. The proposed work aims to provide the automation of water quality estimation through Artificial Intelligence and uses Explainable Artificial Intelligence (XAI) for the explanation of the most significant parameters contributing towards the potability of water and the estimation of the impurities. XAI has the transparency and justifiability as a white-box model since the Machine Learning (ML) model is black-box and unable to describe the reasoning behind the ML classification. The proposed work uses various ML models such as Logistic Regression, Support Vector Machine (SVM), Gaussian Naive Bayes, Decision Tree (DT) and Random Forest (RF) to classify whether the water is drinkable. The various representations of XAI such as force plot, test patch, summary plot, dependency plot and decision plot generated in SHAPELY explainer explain the significant features, prediction score, feature importance and justification behind the water quality estimation. The RF classifier is selected for the explanation and yields optimum Accuracy and F1-Score of 0.9999, with Precision and Re-call of 0.9997 and 0.998 respectively. Thus, the work is an exploratory analysis of the estimation and management of water quality with indicators associated with their significance. This work is an emerging research at present with a vision of addressing the water quality for the future as well.

2.
Sci Rep ; 13(1): 18572, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903967

RESUMO

Diabetes retinopathy (DR) is one of the leading causes of blindness globally. Early detection of this condition is essential for preventing patients' loss of eyesight caused by diabetes mellitus being untreated for an extended period. This paper proposes the design of an augmented bioinspired multidomain feature extraction and selection model for diabetic retinopathy severity estimation using an ensemble learning process. The proposed approach initiates by identifying DR severity levels from retinal images that segment the optical disc, macula, blood vessels, exudates, and hemorrhages using an adaptive thresholding process. Once the images are segmented, multidomain features are extracted from the retinal images, including frequency, entropy, cosine, gabor, and wavelet components. These data were fed into a novel Modified Moth Flame Optimization-based feature selection method that assisted in optimal feature selection. Finally, an ensemble model using various ML (machine learning) algorithms, which included Naive Bayes, K-Nearest Neighbours, Support Vector Machine, Multilayer Perceptron, Random Forests, and Logistic Regression were used to identify the various severity complications of DR. The experiments on different openly accessible data sources have shown that the proposed method outperformed conventional methods and achieved an Accuracy of 96.5% in identifying DR severity levels.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Teorema de Bayes , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina
3.
J Healthc Eng ; 2023: 2728719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776951

RESUMO

Diabetic retinopathy (DR) is a common eye retinal disease that is widely spread all over the world. It leads to the complete loss of vision based on the level of severity. It damages both retinal blood vessels and the eye's microscopic interior layers. To avoid such issues, early detection of DR is essential in association with routine screening methods to discover mild causes in manual initiation. But these diagnostic procedures are extremely difficult and expensive. The unique contributions of the study include the following: first, providing detailed background of the DR disease and the traditional detection techniques. Second, the various imaging techniques and deep learning applications in DR are presented. Third, the different use cases and real-life scenarios are explored relevant to DR detection wherein deep learning techniques have been implemented. The study finally highlights the potential research opportunities for researchers to explore and deliver effective performance results in diabetic retinopathy detection.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Retina/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
5.
Sci Rep ; 12(1): 18134, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307467

RESUMO

Detecting dangerous illnesses connected to the skin organ, particularly malignancy, requires the identification of pigmented skin lesions. Image detection techniques and computer classification capabilities can boost skin cancer detection accuracy. The dataset used for this research work is based on the HAM10000 dataset which consists of 10015 images. The proposed work has chosen a subset of the dataset and performed augmentation. A model with data augmentation tends to learn more distinguishing characteristics and features rather than a model without data augmentation. Involving data augmentation can improve the accuracy of the model. But that model cannot give significant results with the testing data until it is robust. The k-fold cross-validation technique makes the model robust which has been implemented in the proposed work. We have analyzed the classification accuracy of the Machine Learning algorithms and Convolutional Neural Network models. We have concluded that Convolutional Neural Network provides better accuracy compared to other machine learning algorithms implemented in the proposed work. In the proposed system, as the highest, we obtained an accuracy of 95.18% with the CNN model. The proposed work helps early identification of seven classes of skin disease and can be validated and treated appropriately by medical practitioners.


Assuntos
Dermatopatias , Neoplasias Cutâneas , Humanos , Redes Neurais de Computação , Aprendizado de Máquina , Neoplasias Cutâneas/diagnóstico por imagem , Algoritmos , Dermatopatias/diagnóstico por imagem
6.
J Healthc Eng ; 2021: 7517313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804460

RESUMO

The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced features. Mostly, infants communicate with their caretakers through cries, and sometimes, it becomes difficult for the caretakers to comprehend the reason behind the newborn infant cry. As a result, this research proposes a novel work for classifying the newborn infant cries under three groups such as hunger, sleep, and discomfort. For each crying frame, twelve features get extracted through acoustic feature engineering, and the variable selection using random forests was used for selecting the highly discriminative features among the twelve time and frequency domain features. Subsequently, the extreme gradient boosting-powered grouped-support-vector network is deployed for neonate cry classification. The empirical results show that the proposed method could effectively classify the neonate cries under three different groups. The finest experimental results showed a mean accuracy of around 91% for most scenarios, and this exhibits the potential of the proposed extreme gradient boosting-powered grouped-support-vector network in neonate cry classification. Also, the proposed method has a fast recognition rate of 27 seconds in the identification of these emotional cries.


Assuntos
Choro , Voz , Acústica , Coleta de Dados , Humanos , Lactente , Recém-Nascido , Projetos de Pesquisa
7.
Front Public Health ; 9: 688399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660507

RESUMO

The advent of the internet has brought an era of unprecedented connectivity between networked devices, making one distributed computing, called cloud computing, and popular. This has also resulted in a dire need for remote authentication schemes for transferring files of a sensitive nature, especially health-related information between patients, smart health cards, and cloud servers via smart health card solution providers. In this article, we elaborate on our proposed approach for such a system and accomplish an informal analysis to demonstrate the claim that this scheme provides sufficient security while maintaining usability.


Assuntos
Cartões Inteligentes de Saúde , Computação em Nuvem , Segurança Computacional , Confidencialidade , Atenção à Saúde , Humanos , Privacidade
8.
Sustain Cities Soc ; 65: 102589, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33169099

RESUMO

Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many death cases and affected all sectors of human life. With gradual progression of time, COVID-19 was declared by the world health organization (WHO) as an outbreak, which has imposed a heavy burden on almost all countries, especially ones with weaker health systems and ones with slow responses. In the field of healthcare, deep learning has been implemented in many applications, e.g., diabetic retinopathy detection, lung nodule classification, fetal localization, and thyroid diagnosis. Numerous sources of medical images (e.g., X-ray, CT, and MRI) make deep learning a great technique to combat the COVID-19 outbreak. Motivated by this fact, a large number of research works have been proposed and developed for the initial months of 2020. In this paper, we first focus on summarizing the state-of-the-art research works related to deep learning applications for COVID-19 medical image processing. Then, we provide an overview of deep learning and its applications to healthcare found in the last decade. Next, three use cases in China, Korea, and Canada are also presented to show deep learning applications for COVID-19 medical image processing. Finally, we discuss several challenges and issues related to deep learning implementations for COVID-19 medical image processing, which are expected to drive further studies in controlling the outbreak and controlling the crisis, which results in smart healthy cities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...