Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(31): 14330-14338, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905473

RESUMO

The characterization of electrical double layers is important since the interfacial electric field and electrolyte environment directly affect the reaction mechanisms and catalytic rates of electrochemical processes. In this work, we introduce a spectroscopic method based on a Stark shift ruler that enables mapping the electric field strength across the electric double layer of electrode/electrolyte interfaces. We use the tungsten-pentacarbonyl(1,4-phenelenediisocyanide) complex attached to the gold surface as a molecular ruler. The carbonyl (CO) and isocyanide (NC) groups of the self-assembled monolayer (SAM) provide multiple vibrational reporters situated at different distances from the electrode. Measurements of Stark shifts under operando electrochemical conditions and direct comparisons to density functional theory (DFT) simulations reveal distance-dependent electric field strength from the electrode surface. This electric field profile can be described by the Gouy-Chapman-Stern model with Stern layer thickness of ∼4.5 Å, indicating substantial solvent and electrolyte penetration within the SAM. Significant electro-induction effect is observed on the W center that is ∼1.2 nm away from the surface despite rapid decay of the electric field (∼90%) within 1 nm. The applied methodology and reported findings should be particularly valuable for the characterization of a wide range of microenvironments surrounding molecular electrocatalysts at electrode interfaces and the positioning of electrocatalysts at specific distances from the electrode surface for optimal functionality.


Assuntos
Eletricidade , Eletrólitos , Eletrodos , Ouro , Vibração
2.
J Phys Chem A ; 125(36): 7988-7999, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34478284

RESUMO

Two-photon absorption (2PA) spectra of liquid cyclohexane and hexanes are reported for the energy range 6.4-8.5 eV (177-145 nm), providing detailed information about their electronic structures in bulk liquid. Using a broadband pump-probe fashion, we measured the continuous 2PA spectra by simultaneous absorption of a 266 nm (4.6 eV) pump photon and one UV-vis probe photon from the white-light continuum (1.8-3.9 eV). Theoretical one-photon absorption (1PA) and 2PA cross sections of isolated gas phase molecules are computed by the equation of motion coupled-cluster method with single and double substitutions (EOM-CCSD) to substantiate the assignment of the experimental spectra, and the natural transition orbital (NTO) analysis provides visualization of the participating orbitals in a transition. Our analysis suggests that upon solvation transitions at the lowest excitation energy involving promotion of electron to the 3s Rydberg orbitals are blue-shifted (∼0.55 eV for cyclohexane and ∼0.18 eV for hexanes) to a greater extent as compared to those involving other Rydberg orbitals, which is similar to the behavior observed for water and alcohols. All other transitions experience negligible (cyclohexane) or minor red-shift by ∼0.15-0.2 eV (hexane) upon solvation. In both alkanes, the spectra are entirely dominated by Rydberg transitions: the most intense bands in 1PA and 2PA spectra are due to the excitation of electrons to the Rydberg "p" and "d" type orbitals, respectively, although one transition terminating in the 3s Rydberg has significant 2PA strength. This work demonstrates that the gas phase electronic transition properties in alkanes are not significantly altered upon solvation. In addition, electronic structure calculations using an isolated-molecule framework appear to provide a reasonable starting point for a semiquantitative picture for spectral assignment and also to analyze the solvatochromic shifts for liquid phase absorption spectra.

3.
Chem Sci ; 12(30): 10131-10149, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377403

RESUMO

External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained via synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces.

4.
Nature ; 594(7861): 62-65, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079138

RESUMO

Our understanding of the dielectric response of interfacial water, which underlies the solvation properties and reaction rates at aqueous interfaces, relies on the linear response approximation: an external electric field induces a linearly proportional polarization. This implies antisymmetry with respect to the sign of the field. Atomistic simulations have suggested, however, that the polarization of interfacial water may deviate considerably from the linear response. Here we present an experimental study addressing this issue. We measured vibrational sum-frequency generation spectra of heavy water (D2O) near a monolayer graphene electrode, to study its response to an external electric field under controlled electrochemical conditions. The spectra of the OD stretch show a pronounced asymmetry for positive versus negative electrode charge. At negative charge below 5 × 1012 electrons per square centimetre, a peak of the non-hydrogen-bonded OD groups pointing towards the graphene surface is observed at a frequency of 2,700 per centimetre. At neutral or positive electrode potentials, this 'free-OD' peak disappears abruptly, and the spectra display broad peaks of hydrogen-bonded OD species (at 2,300-2,650 per centimetre). Miller's rule1 connects the vibrational sum-frequency generation response to the dielectric constant. The observed deviation from the linear response for electric fields of about ±3 × 108 volts per metre calls into question the validity of treating interfacial water as a simple dielectric medium.

5.
ACS Appl Mater Interfaces ; 12(23): 26515-26524, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406227

RESUMO

Molecular organization of vapor-deposited organic molecules in the active layer of organic light-emitting diodes (OLEDs) has been a matter of great interest as it directly influences various optoelectronic properties and the overall performance of the devices. Contrary to the general assumption of isotropic molecular orientation in vacuum-deposited thin-film OLEDs, it is possible to achieve an anisotropic molecular distribution at or near the surface under controlled experimental conditions. In this study, we have used interface-specific vibrational sum frequency generation (VSFG) spectroscopy to determine the orientation of a low-molecular weight OLED material, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP), at free (air) and buried (CaF2) interfaces. VSFG spectra were measured at four different polarization combinations for five different thicknesses of the CBP film. The spectral shift and VSFG intensity changes with the film thickness can be accurately modeled by considering the optical interference effect of the signals coming from the CBP/air and CBP/CaF2 interfaces. A global fitting of the experimental spectra for all thicknesses along with theoretical simulations reveal that the long molecular axis of CBP is oriented at an angle of ∼58° (47-70°) from the surface normal at the air/CBP interface, whereas at the CBP/CaF2 interface, the angle is ∼48° (43-52°). Such a change in the angle (∼10°) suggests that the CBP molecule tends to orient more vertically (edge-on) at the buried CaF2 interface, which may be attributed to the intermolecular π-π stacking interaction between adjacent CBP molecules.

6.
J Phys Chem Lett ; 11(5): 1656-1661, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32040333

RESUMO

Liquid phase charge-transfer-to-solvent (CTTS) transitions are important, as they serve as photochemical routes to solvated electrons. In this work, broadband deep-ultraviolet electronic sum frequency generation (DUV-ESFG) and two-photon absorption (2PA) spectroscopic techniques were used to assign and compare the nature of the aqueous iodide CTTS excitations at the air/water interface and in bulk solution. In the one-photon absorption (1PA) spectrum, excitation to the 6s Rydberg-like orbital (5p → 6s) gives rise to a pair of spin-orbit split iodine states, 2P3/2 and 2P1/2. In the 2PA spectra, the lower-energy 2P3/2 peak is absent and the observed 2PA peak, which is ∼0.14 eV blue-shifted relative to the upper 2P1/2 CTTS peak seen in 1PA, arises from 5p → 6p electronic promotion. The band observed in the ESFG spectrum is attributed to mixing of excited states involving 5p → 6p and 5p → 6s promotions caused by both vibronic coupling and the external electric field generated by asymmetric interfacial solvation.

7.
J Phys Chem Lett ; 10(18): 5434-5439, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31442376

RESUMO

The methyl-terminated Si(111) surface possesses a 3-fold in-plane symmetry, with the methyl groups oriented perpendicular to the substrate. The propeller-like rotation of the methyl groups is hindered at room temperature and proceeds via 120° jumps between three isoenergetic minima in registry with the crystalline Si substrate. We have used line-shape analysis of polarization-selected vibrational sum frequency generation spectroscopy to determine the rotational relaxation rate of the surface methyl groups and have measured the temperature dependence of the relaxation rate between 20 and 120 °C. By fitting the measured rate to an Arrhenius dependence, we extracted an activation energy (the rotational barrier) of 830 ± 360 cm-1 and an attempt frequency of (2.9 ± 4.2) × 1013 s-1 for the methyl rotation process. Comparison with the harmonic frequency of a methyl group in a 3-fold cosine potential suggests that the hindered rotation occurs via uncorrelated jumps of single methyl groups rather than concerted gear-like rotation.

8.
J Phys Chem A ; 123(27): 5789-5804, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199648

RESUMO

Two-photon absorption (2PA) spectra of liquid methanol and ethanol are reported for the energy range 7-10 eV from the first electronic excitation to close to the liquid-phase ionization potential. The spectra give detailed information on the electronic structures of these alcohols in the bulk liquid. The focus of this Article is to examine the electronic structure change compared with water on substitution of a hydrogen by an alkyl group. Continuous 2PA spectra are recorded in the broadband pump-probe fashion, with a fixed pump pulse in the UV region and a white-light continuum as a probe. Pump pulses of two different energies, 4.6 and 6.2 eV, are used to cover the spectral range up to 10 eV. In addition, theoretical 2PA cross sections for both molecules isolated in the gas phase are computed by the equation-of-motion coupled-cluster method with single and double substitutions (EOM-CCSD). These computational results are used to assign both the experimental 2PA and literature one-photon linear absorption spectra. The most intense spectral features are due to transitions to the Rydberg states, and the 2PA spectra are dominated by the totally symmetric 3pz ← 2pz transition in both alcohols. The experimental 2PA spectra are compared with the simulated 2PA spectra based on ab initio calculations that reveal a general blue shift of the excited transitions upon solvation. The effective 2PA thresholds in methanol and ethanol decrease to 6.9 eV compared with 7.8 eV for water. The analysis of the 2PA polarization ratio leads us to conclude that the excited states of ethanol deviate more markedly from water in the lower energy region compared with methanol. The polarization dependence of the 2PA spectra reveal the symmetries of the excited states within the measured energy range. Natural transition orbital calculations are performed to visualize the nature of the transitions and the orbitals participating during electronic excitation.

9.
J Phys Chem Lett ; 10(8): 1757-1762, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30908051

RESUMO

Molecular orientation at the donor-acceptor interface plays a crucial role in determining the efficiency of organic semiconductor materials. We have used vibrational sum frequency generation spectroscopy to determine the orientation of poly-3-hexylthiophene (P3HT) at the planar buried interface with fullerene (C60). The thiophene rings of P3HT have been found to tilt significantly toward C60, making an average angle θ ≈ 49° ± 10° between the plane of the ring and the interface. Such tilt may be attributed to π-π stacking interactions between P3HT and C60 and may facilitate efficient charge transfer between donor and acceptor. Upon annealing, the thiophene rings tilt away from the interface by Δθ = 12-19°. This may be attributed to higher crystallinity of annealed P3HT that propagates all the way to the interface, resulting in more "edge-on" orientation, which is consistent with the observed red-shift by ∼6 cm-1 and spectral narrowing of the C=C stretch bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...