Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nature ; 627(8002): 73-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418887

RESUMO

By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena1. The megabar regime represents an interesting frontier, in which recent discoveries include high-temperature superconductors, as well as structural and valence phase transitions2-6. However, at such high pressures, many conventional measurement techniques fail. Here we demonstrate the ability to perform local magnetometry inside a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach uses a shallow layer of nitrogen-vacancy colour centres implanted directly within the anvil7-9; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the nitrogen-vacancy centre to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH9 (ref. 10). By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping both the diamagnetic response and flux trapping, we directly image the geometry of superconducting regions, showing marked inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed-loop optimization of superhydride materials synthesis.

2.
Magn Reson Imaging ; 103: 185-191, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536637

RESUMO

PURPOSE: A combined resting state functional connectivity MRI (fcMRI) and diffusion tensor imaging (DTI) metric called structural and functional connectivity index (SFCI) was recently proposed for tracking disease status and progression in multiple sclerosis (MS). The metric combines fcMRI and transverse diffusivity (TD) along different functional pathways involved in principle symptomatic domains of MS. In a longitudinal study of patients with MS receiving the same MS therapy, initial worsening of transcallosal (TC) motor and frontoparietal (FP) cognitive networks, as measured by fcMRI and DTI over the first year was followed by stabilization in the second year of follow-up. In this study we have (i) probed relationships between individual and composite neurological measures of MS with SFCI and its individual components along TC motor and FP cognitive pathways and (ii) compared sensitivity of SFCI to treatment-induced longitudinal changes with each individual imaging measure. METHODS: Twenty five patients with MS (15 female, age 42 ± 8 y) participated in this study and were scanned at 3 T whole body MRI scanner with diffusion tensor imaging (DTI) and resting-state functional connectivity MRI (fcMRI) scan protocol at baseline and 6, 12, 18 and 24 months after starting fingolimod. fcMRI and TD along TC and FP pathways were combined to form structural and functional connectivity index (SFCI) at each time point. Correlations between individual/combined neurological measures and individual imaging components/SFCI at baseline and were evaluated and compared. In addition, efficacies of individual and combined imaging metrics in tracking network integrity were compared. RESULTS: Individual TD along the TC pathway was significantly inversely correlated with all individual/composite neurological scores. There were moderate correlations of TC and FP components of SFCI with most of the neurological scores, and the pathway-combined SFCI was significantly correlated with all neurological scores. Trend-level increases of both TC and FP fcMRI were observed during the second year of follow-up, both TC and FP TD increased significantly in the first year and then stabilized during the second year. A trend toward a decrease in combined imaging metrics along TC and FP were observed during the first year, followed by a trend toward an increase in these metrics during the second year, while a significant decrease in SFCI during the first year followed by a significant increase during the second year was observed. CONCLUSIONS: SFCI was more effective in tracking network integrity/disease progression than individual pathway-specific components, which supports its use as an imaging marker for MS disease status and progression.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Progressão da Doença , Encéfalo/diagnóstico por imagem
3.
Environ Geochem Health ; 45(11): 7979-7997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515727

RESUMO

Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.


Assuntos
Oryza , Solo , Solo/química , Carbono/análise , Biomarcadores Ambientais , Indicadores de Qualidade em Assistência à Saúde , Agricultura/métodos , Fertilizantes , Nitrogênio/análise
4.
J Environ Manage ; 303: 114151, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844054

RESUMO

Mangroves play a key role in ecosystem balancing and climate change mitigation. It acts as a source and sink of methane (CH4), a major greenhouse gas responsible for climate change. Energy metabolic pathways of methane production (methanogenesis) and oxidation (methanotrophy) are directly driven by sulphur (S) and nitrogen (N) metabolism and salinity in coastal wetlands. To investigate, how mangrove-degradations, affect the source-sink behaviour of CH4; the pathways of CH4, S and N were studied through whole-genome metagenomic approach. Soil samples were collected from degraded and undisturbed mangrove systems in Sundarban, India. Structural and functional microbial diversities (KEGG pathways) of CH4, S and N metabolism were analysed and correlated with labile carbon pools and physico-chemical properties of soil. Overall, the acetoclastic pathway of methanogenesis was dominant. However, the relative proportion of conversion of CO2 to CH4 was more in degraded mangroves. Methane oxidation was higher in undisturbed mangroves and the serine pathway was dominant. After serine, the ribulose monophosphate pathway of CH4 oxidation was dominant in degraded mangrove, while the xylulose monophosphate pathway was dominant in undisturbed site as it is more tolerant to salinity and higher pH. The assimilatory pathway (AMP) of S-metabolism was dominant in both systems. But in AMP pathway, adenosine triphosphate sulfurylase enzyme reads were higher in degraded mangrove, while NADPH-sulfite reductase abundance was higher in undisturbed mangrove due to higher salinity, and pH. In N-metabolism, the denitrification pathway was predominant in degraded sites, whereas the dissimilatory nitrate reduction pathway was dominant in undisturbed mangroves. The relative ratios of sulphur reducing bacteria (SRB): methanogens were higher in degraded mangrove; however, methanotrophs:methanogens was higher in undisturbed mangrove indicated lower source and greater sink capacity of CH4 in the system. Microbial manipulation in mangrove-rhizosphere for regulating major energy metabolic pathways of methane could open-up a new window of climate change mitigation in coastal wetlands.


Assuntos
Ecossistema , Metano , Dióxido de Carbono/análise , Mudança Climática , Redes e Vias Metabólicas , Nitrogênio , Solo , Enxofre , Áreas Alagadas
5.
Curr Res Microb Sci ; 2: 100041, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841332

RESUMO

Microbial fuel cells (MFCs) that generate bioelectricity from biodegradable waste have received considerable attention from biologists. Fungi play a significant role as both anodic and cathodic catalysts in MFCs. Saccharomyces cerevisiae is a fungus with an ability to transfer electrons through mediators such as methylene blue (MB), neutral red (NR) or even without a mediator. This unique role of fungal cells in exocellular electron transfer (EET) and their interactions with electrodes hold a lot of promise in areas such as wastewater treatment where yeast cell-based MFCs can be used. The present article highlights the physico-chemical factors affecting the performance of fungal-mediated MFCs in terms of power output and degradation of organic pollutants, along with the challenges associated with fungal MFCs. In addition, to this comparative assessment of fungal-mediated bio-electrochemical systems, their development, possible applications and potential challenges are also discussed.

6.
Nature ; 597(7874): 45-50, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471276

RESUMO

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws1-7. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent 'classical' properties of a system (for example, diffusivity, viscosity and compressibility) from a generic microscopic quantum Hamiltonian7-14. Here we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometre length scales. In particular, the combination of positional disorder and on-site random fields leads to diffusive dynamics that are Fickian yet non-Gaussian15-20. Finally, by tuning the underlying parameters within the spin Hamiltonian via a combination of static and driven fields, we demonstrate direct control over the emergent spin diffusion coefficient. Our work enables the investigation of hydrodynamics in many-body quantum spin systems.

7.
Sci Total Environ ; 781: 146713, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784529

RESUMO

Mangrove provides significant ecosystem services, however, 40% of tropical mangrove was lost in last century due to climate change induced sea-level rise and anthropogenic activities. Sundarban-India, the largest contiguous mangrove of the world lost 10.5% of its green during 1930-2013 which primarily converted to rice-based systems. Presently degraded mangrove and adjacent rice ecology in Sundarban-India placed side by side and create typical ecology which is distinct in nature in respect to soil physicochemical properties, carbon dynamics, and microbial diversities. We investigated the structural and functional diversities of bacteria and archaea through Illumina MiSeq metagenomic analysis using V3-V4 region of 16S rRNA gene approach that drives greenhouse gases emission and carbon-pools. Remote sensing-data base were used to select the sites for collecting the soil and gas samples. The methane and nitrous oxide emissions were lower in mangrove (-0.04 mg m-2 h-1 and -52.8 µg m-2 h-1) than rice (0.26 mg m-2 h-1 and 44.7 µg m-2 h-1) due to less availability of carbon-substrates and higher sulphate availability (85.8% more than rice). The soil labile carbon-pools were more in mangrove, but lower microbial activities were noticed due to stress conditions. A unique microbial feature indicated by higher methanotrophs: methanogens (11.2), sulphur reducing bacteria (SRB): methanogens (93.2) ratios and lower functional diversity (7.5%) in mangrove than rice. These could be the key drivers of lower global warming potential (GWP) in mangrove that make it a green production system. Therefore, labile carbon build-up potential (38%) with less GWP (63%) even in degraded-mangrove makes it a clean production system than wetland-rice that has high potential to climate change mitigation. The whole genome metagenomic analysis would be the future research priority to identify the predominant enzymatic pathways which govern the methanogenesis and methanotrophy in this system.


Assuntos
Oryza , Áreas Alagadas , Agricultura , Archaea/genética , Bactérias/genética , Ecossistema , Índia , Metano/análise , Óxido Nitroso/análise , RNA Ribossômico 16S/genética , Solo
8.
Magn Reson Imaging ; 74: 113-120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956806

RESUMO

BACKGROUND: Fingolimod, an oral drug, has been reported to reduce relapse rate in multiple sclerosis (MS). However disease progression may still occur in spite of control of inflammation. Functional imbalances within and between cerebral networks associated with disruption of structural and functional network integrity, have been reported in MS. An effective therapy is expected to stabilize such functional network integrity. OBJECTIVE: The purpose of this study was to investigate changes in structural and resting-state functional connectivity of motor and cognitive networks, and associated changes in neurologic scores in MS, during 2 years of fingolimod therapy. METHODS: Twenty five subjects with MS were recruited for this study. Subjects were scanned with diffusion tensor imaging (DTI) and resting-state functional connectivity MRI (fcMRI) scan protocol at 3 T with 6-month interval over a period of 2 years. Neurologic performance scores of motor and cognitive performances were also obtained. RESULTS: DTI measures worsened during the 1st year and then stabilized; any trend of stabilization of fcMRI was delayed until the 2nd year. While motor performance did not change, cognitive performance showed improvement. Several baseline DTI measures correlated with relevant neurologic scores. CONCLUSION: Initial worsening of motor and cognitive network was reported after 1 year of treatment, but seems DTI and fcMRI measures seem to stabilize after around one year fingolimod therapy.


Assuntos
Imagem de Tensor de Difusão , Cloridrato de Fingolimode/farmacologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Progressão da Doença , Feminino , Cloridrato de Fingolimode/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia
9.
Med. intensiva (Madr., Ed. impr.) ; 44(3): 135-141, abr. 2020. graf, tab
Artigo em Inglês | IBECS | ID: ibc-190559

RESUMO

PURPOSE: Various modifications of the Macintosh blade and direct laryngoscopy have been incorporated into practice to improve the intubation success rate and avoid complications while ensuring patient safety. This study evaluates the usefulness of two different direct laryngoscopy methods used by operators with various level of experience in the Intensive Care Unit. MATERIAL AND METHODS: In a single centre prospective study, C-MAC and Macintosh laryngoscopes were compared in terms of laryngoscopy and intubation outcomes such as glottic visualization, number of intubation attempts, intubation success and satisfaction score. RESULTS: During the one-year study period, 263 patients were evaluated and data of 218 patients were analyzed. The rate of successful first attempt intubation was higher in the video laryngoscope group (VL) (84% vs 57%; P < 0.001). A significantly greater number of patients in the Macintosh laryngoscopy group had difficult visualization of the glottis in terms of the modified Cormack and Lehane classification and Percentage of Glottic Opening scale. CONCLUSIÓN: The use of video laryngoscope for intubation in ICU settings results in better visualization of the glottis and a higher incidence of successful intubation attempts


OBJETIVO: En la práctica clínica se han incorporado diversas modificaciones a la hoja de Macintosh y del laringoscopio directo para mejorar la tasa de éxito de la intubación y evitar complicaciones, a la vez que se garantiza la seguridad del paciente. En este estudio evaluamos la utilidad de los 2 métodos de laringoscopia directa empleados por profesionales sanitarios con distintos grados de experiencia en la unidad de cuidados intensivos. MATERIALES Y MÉTODOS: En un estudio prospectivo y unicéntrico se compararon los laringoscopios de Macintosh y C-MAC en términos de deselances de la largingoscopia y la intubación, como la visualización de la glotis, el número de intentos de intubación, el éxito de la intubación y la puntuación de la satisfacción. RESULTADOS: Durante el periodo del estudio de un año se evaluaron 263 pacientes y se analizaron los datos de 218 pacientes. La tasa de intubación con éxito al primer intento fue más elevada en el grupo de videolaringoscopio (84% frente al 57%, p < 0,001). Un número significativamente más alto de pacientes del grupo del laringoscopio de Macintosh presentó dificultades de visualización de la glotis de acuerdo con la clasificación modificada de Cormack y Lehane, y según la escala de porcentaje de apertura de la glotis. CONCLUSIÓN: El uso del videolaringoscopio para la intubación en el entorno de la unidad de cuidados intensivos se asocia con una mejor visualización de la glotis y una tasa más alta de intentos de intubación exitosos


Assuntos
Humanos , Intubação Intratraqueal/instrumentação , Laringoscópios , Gravação em Vídeo/instrumentação , Glote/diagnóstico por imagem , Unidades de Terapia Intensiva , Estudos Prospectivos
10.
Sci Total Environ ; 705: 135909, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31839306

RESUMO

Tropical mangrove represents one of the most threatened ecosystems despite their huge contribution to ecosystem services, carbon (C) sequestration and climate change mitigation. Understanding the system in light of seasonal fluctuations on greenhouse gases (GHGs) emissions due to human interferences and the tidal effect is important for devising site-specific real-time climate change mitigation strategies. In order to capture the seasonal variations, the three modes of transport of GHGs through pneumatophore, ebullition as bubbles and water-soluble diffusion was quantified. The three unique techniques for the gas collection were used to estimate the GHGs [methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2)] emission, at three degraded-mangrove sites in Sundarban, India. We identified three degraded mangrove ecologies based on the remote sensing data of 1930 and 2013 (mangrove-covered area in Sundarban; 2387, 2136 km2, respectively). Samples were collected and analyzed for four seasons [winter (November-January), summer (February-April), pre-monsoon (May-June) and monsoon (July-October)], at three representative sites (Sadhupur, Dayapur, and Pakhiralaya). Monsoonal CH4 and CO2 fluxes (0.353 ± 0.026 and 64.5 ± 6.1 mmol m-2 d-1, respectively) were higher than winter and summer. However, the soil labile C pools showed the opposite trend i.e. more in summer followed by winter and monsoon. In contrast, the N2O fluxes were more during summer (54.2 ± 3.2 µmol m-2 d-1). The stagnant water had higher dissolved GHGs concentration compared to tidewater due to less salinity and a long time of stagnation. The mode of transport of GHGs through pneumatophore, ebullition, and water-soluble diffusion was also significantly varied with seasons, soil­carbon status and tidewater intrusion. Therefore, seasonal fluctuations of GHGs emission and tidal effect must be considered along with soil labile C pools for GHG-C budgeting and climate change mitigation in the mangrove ecosystem.


Assuntos
Gases de Efeito Estufa/análise , Dióxido de Carbono , Ecossistema , Monitoramento Ambiental , Efeito Estufa , Índia , Metano , Óxido Nitroso , Estações do Ano , Solo , Áreas Alagadas
11.
Med Intensiva (Engl Ed) ; 44(3): 135-141, 2020 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31780257

RESUMO

PURPOSE: Various modifications of the Macintosh blade and direct laryngoscopy have been incorporated into practice to improve the intubation success rate and avoid complications while ensuring patient safety. This study evaluates the usefulness of two different direct laryngoscopy methods used by operators with various level of experience in the Intensive Care Unit. MATERIAL AND METHODS: In a single centre prospective study, C-MAC and Macintosh laryngoscopes were compared in terms of laryngoscopy and intubation outcomes such as glottic visualization, number of intubation attempts, intubation success and satisfaction score. RESULTS: During the one-year study period, 263 patients were evaluated and data of 218 patients were analyzed. The rate of successful first attempt intubation was higher in the video laryngoscope group (VL) (84% vs 57%; P<0.001). A significantly greater number of patients in the Macintosh laryngoscopy group had difficult visualization of the glottis in terms of the modified Cormack and Lehane classification and Percentage of Glottic Opening scale. CONCLUSION: The use of video laryngoscope for intubation in ICU settings results in better visualization of the glottis and a higher incidence of successful intubation attempts.


Assuntos
Unidades de Terapia Intensiva , Intubação Intratraqueal/instrumentação , Laringoscópios , Laringoscopia/instrumentação , Anestesiologistas , Cuidados Críticos , Feminino , Glote/anatomia & histologia , Humanos , Intubação Intratraqueal/métodos , Laringoscopia/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
12.
Science ; 366(6471): 1349-1354, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831662

RESUMO

Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven [Formula: see text] phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures.

13.
Environ Monit Assess ; 191(2): 98, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30675638

RESUMO

Land use and land cover (LULC) change have considerable influence on ecosystem services. Assessing change in ecosystem services due to LULC change at different spatial and temporal scales will help to identify suitable management practices for sustaining ecosystem productivity and maintaining the ecological balance. The objective of this study was to investigate variations in ecosystem services in response to LULC change over 27 years in four agro-climatic zones (ACZ) of eastern India using satellite imagery for the year 1989, 1996, 2005, 2011 (Landsat TM) and 2016 (Landsat 8 OLI). The satellite images were classified into six LULC classes, agriculture land, forest, waterbody, wasteland, built-up, and mining area. During the study period (1989 to 2016), forest cover reduced by 5.2%, 13.7%, and 3.6% in Sambalpur, Keonjhar, and Kandhamal districts of Odisha, respectively. In Balasore, agricultural land reduced by 17.2% due to its conversion to built-up land. The value of ecosystem services per unit area followed the order of waterbodies > agricultural land > forests. A different set of indicators, e.g., by explicitly including diversity, could change the rank between these land uses, so the temporal trends within a land use are more important than the absolute values. Total ecosystem services increased by US$ 1296.4 × 105 (50.74%), US$ 1100.7 × 105 (98.52%), US$ 1867 × 105 (61.64%), and US$ 1242.6 × 105 (46.13%) for Sambalpur, Balasore, Kandhamal, and Keonjhar, respectively.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Agricultura/métodos , Ecossistema , Florestas , Índia , Mineração , Imagens de Satélites/métodos
14.
Sci Total Environ ; 651(Pt 1): 84-92, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223222

RESUMO

Methane (CH4) is predominantly produced in lowland rice soil, but its emission from soil to atmosphere primarily depends on passage/conduit or capillary pore spaces present in rice plants. The gas transport mechanism through aerenchyma pore spaces of rice cultivars was studied to explore the plant mediated CH4 emission. Seven rice cultivars, based on the life cycle duration (LCD), were tested in tropical eastern India. Three LCD groups were, (a) Kalinga 1 and CR Dhan 204 (LCD: 110-120 days); (b) Lalat, Pooja and CR 1014 (LCD: 130-150 days); and (c) Durga and Varshadhan (LCD: 160-170 days). Rate of CH4emission, root exudates, root oxidase activities and shoot aerenchyma pore spaces were analyzed to study the mechanism of plant mediated emission from rice. Aerenchyma pore space was quantified in the hypothesis that it regulates the CH4 transportation from soil to atmosphere. The ratio of pore space area to total space was lowest in Kalinga 1 cultivar (0.29) and highest was in Varshadhan (0.43). Significant variations in the methane emission were observed among the cultivars with an average emission rate ranged from 0.86 mg m-2 h-1 to 4.96 mg m-2 h-1. The CH4 emission rates were lowest in short duration cultivars followed by medium and long duration ones. The greenhouse gas intensity considering average CH4 emission rate per unit grain yield was also lowest (0.35) in Kalinga 1 and relatively less in short and medium duration cultivars. Root exudation was higher at panicle initiation (PI) than maximum tillering (MT) stage. Lowest exudation was noticed in (197.2 mg C plant-1 day-1) Kalinga 1 and highest in Varsadhan (231.7 mg C plant-1 day-1). So we can say, the rate of CH4 emission was controlled by aerenchyma orientation, root exudation and biomass production rate which are the key specific traits of a cultivar. Identified traits were closely associated with duration and adaptability to cultivars grown in specific ecology. Therefore, there is possibility to breed rice cultivars depending on ecology, duration and having less CH4 emission potential, which could be effectively used in greenhouse gas mitigation strategies.


Assuntos
Poluentes Atmosféricos/metabolismo , Metano/metabolismo , Oryza/metabolismo , Índia , Oryza/anatomia & histologia , Oryza/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Clima Tropical
15.
Phys Rev Lett ; 121(24): 246402, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608732

RESUMO

Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay between interactions, internal fields, and lattice strain. Working with the nitrogen-vacancy (NV) center in diamond, we demonstrate that local electric fields dominate the magnetic resonance behavior of NV ensembles at a low magnetic field. We introduce a simple microscopic model that quantitatively captures the observed spectra for samples with NV concentrations spanning more than two orders of magnitude. Motivated by this understanding, we propose and implement a novel method for the nanoscale localization of individual charges within the diamond lattice; our approach relies upon the fact that the charge induces a NV dark state which depends on the electric field orientation.

16.
Sci Total Environ ; 586: 1245-1253, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238374

RESUMO

Biochemical pathways of methanogenesis and methanotrophy coupled with carbon (C)-nitrogen (N) metabolism were studied in long term (13years) manured systems in lowland rice paddy through metagenomics approach. Manured systems included in this study were, control (exclusion of application of any manure), farm yard manure (FYM, @5Mgha-1yr-1) and green manuring (GM with Sesbania aculeata). Metagenomic sequence data revealed the dominance of C decomposing bacterial communities' like Proteobacteria, Planctomycetes, Actinobacteria, Firmicutes, Acidobacteria, in manure amended soils as compared to control. Diversities for assimilatory and dissimilatory N-fixing microorganisms at phylum level were found higher under GM as compared to rest. Two genera responsible for methanogenesis, viz. Methanolobus and Methanotorris were absent in manured systems as compared to control. The acetoclastic and serine pathway was found as the predominant pathway for methanogenesis and methanotrophy, respectively, in tropical lowland rice paddy. Abundance reads of enzymes were in the range of 254-445 in the acetoclastic methanogenesis pathway. On the other hand, these were varied from 165 to 216 in serine pathway of methanotrophy. Lowland paddy soil exhibited higher functional and structural diversities in manured systems as compared to unamended control in respect to labile C pools and CH4 production. Methane (CH4) emission was 31% higher in FYM system than GM. However, nitrous oxide (N2O) emission was found 25% higher in GM as compared to FYM. As a whole, bacterial diversities were higher under FYM system in tropical lowland rice paddy as compared to GM and unamended systems.

17.
Analyst ; 141(10): 2977-89, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27048794

RESUMO

The present study concerns the enhancement of methanol selectivity of three dimensional (3D) nanoflowers (NFs) of ZnO by dispersing nickel oxide (NiO) and palladium oxide (PdO) nanoparticles on the surface of the nanoflowers to form localized hybrid nano-junctions. The nanoflowers were fabricated through a liquid phase deposition technique and the modification was achieved by addition of NiCl and PdCl2 solutions. In addition to the detailed structural (like X-ray diffraction (XRD), electron dispersive spectroscopy (EDS), X-ray mapping, XPS) and morphological characterization (by field emission scanning electron microscopy (FESEM)), the existence of different defect states (viz. oxygen vacancy) was also confirmed by photoluminescence (PL) spectroscopy. The sensing properties of the pristine and metal oxide nanoparticle (NiO/PdO)-ZnO NF hybrid sensor structures, towards different alcohol vapors (methanol, ethanol, 2-propanol) were investigated in the concentration range of 0.5-700 ppm at 100-350 °C. Methanol selectivity study against other interfering species, viz. ethanol, 2-propanol, acetone, benzene, xylene and toluene was also investigated. It was found that the PdO-ZnO NF hybrid system offered enhanced selectivity towards methanol at low temperature (150 °C) compared to the NiO-ZnO NF and pristine ZnO NF counterparts. The underlying mechanism for such improvement has been discussed with respective energy band diagram and preferential dissociation of target species on such 3D hybrid structures. The corresponding improvement in transient characteristics has also been co-related with the proposed model.

18.
Environ Pollut ; 208(Pt B): 600-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589098

RESUMO

Emission patterns of 13 VOCs were investigated in three types of vermicomposting systems (Eisenia fetida, Metaphire posthuma, and Lampito mauritii) in reference to a traditional aerobic composting system by feeding the systems with mixtures of three materials (coal ash (CA), municipal solid waste (MSW), and cow dung (CD)). On an average, the emission rates of aromatic VOCs (benzene, toluene, xylenes, and styrene) were two to three times higher than all other groups (aldehyde, ketones, esters, and alcohols) from all three types of feeding mixtures. However, the emission rates of aromatic VOCs were generally reduced over time in both aerobic composting and vermicomposting systems. Such reduction in the emission rates was most prominent from Eisenia-treated CD + MSW (1:1), Lampito-treated CD + CA (1:1), and Metaphire-treated CD. The results clearly indicated that the increase in humified organic C fractions (humic acid and fulvic acid) and the microbial biomass present during the biocomposting processes greatly reduced the emissions of VOCs. Hence, the study recommends that vermicomposting of coal ash and municipal solid waste in combination with cow dung in 1:1 ratio is an environmentally gainful proposition.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Compostos Orgânicos Voláteis/análise , Animais , Biomassa , Cinza de Carvão , Substâncias Húmicas , Oligoquetos/fisiologia , Solo , Resíduos Sólidos , Temperatura
19.
Sci Total Environ ; 542(Pt A): 886-98, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26556753

RESUMO

Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and abundances of C and N decomposing bacteria in lowland rice rhizosphere were found under e-CO2T, which could be explored further for their specific role in nutrient cycling, sustainable agriculture and environment management.


Assuntos
Bactérias/genética , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Metagenoma , Metano/metabolismo , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Rizosfera , Agricultura , Ciclo do Carbono , Ecossistema , Metagenômica , Oryza , Microbiologia do Solo , Temperatura
20.
Environ Monit Assess ; 187(11): 679, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26450689

RESUMO

Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Centrais Elétricas , Poluentes do Solo/análise , Solo/química , Carvão Mineral/análise , Cinza de Carvão/análise , Cinza de Carvão/química , Poeira/análise , Poluição Ambiental/análise , Humanos , Análise Multivariada , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...