Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 539(1): 63-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055535

RESUMO

Cytochrome P450 (CYP) 147F1 from Streptomyces peucetius is a new CYP subfamily of that has been identified as ω-fatty acid hydroxylase. We describe the identification of CYP147F1 as a fatty acid hydroxylase by screening for the substrate using a substrate binding assay. Screening of substrates resulted in the identification of fatty acid groups of compounds as potential hits for CYP147F1 substrates. Fatty acids from C10:0 to C18:0 all showed type I shift spectra indicating their potential as substrates. Among several fatty acids tested, lauric acid, myrsitic acid, and palmitic acid were used to characterize CYP147F1. CYP147F1 activity was reconstituted using putidaredoxin reductase and putidaredoxin from Pseudomonas putida as surrogate electron transfer partners. Kinetic parameters, including the dissociation constant, Km, NADH consumption assay, production formation rate, and coupling efficiency for CYP147F1 were also determined.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Streptomyces/enzimologia , Biologia Computacional , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Hidroxilação , Cinética , Filogenia , Ligação Proteica
2.
BMB Rep ; 45(12): 736-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23261061

RESUMO

Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of 4.6 Å from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze C(9)-C(10) epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Oleico/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Compostos de Epóxi/metabolismo , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Oxirredutases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Ácidos Esteáricos/metabolismo
3.
J Microbiol Biotechnol ; 22(8): 1059-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22713981

RESUMO

Biocatalytic transfer of oxygen in isolated cytochrome P450 or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. Cytochrome P450 CYP105P2 was isolated from Streptomyces peucetius that showed a high degree of amino acid identity with hydroxylases. Previously performed homology modeling, and subsequent docking of the model with flavone, displayed a reasonable docked structure. Therefore, in this study, in a pursuit to hydroxylate the flavone ring, CYP105P2 was co-expressed in a two-vector system with putidaredoxin reductase (camA) and putidaredoxin (camB) from Pseudomonas putida for efficient electron transport. HPLC analysis of the isolated product, together with LCMS analysis, showed a monohydroxylated flavone, which was further established by subsequent ESI/MS-MS. A successful 10.35% yield was achieved with the whole-cell bioconversion reaction in Escherichia coli. We verified that CYP105P2 is a potential bacterial hydroxylase.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flavonas/metabolismo , Streptomyces/enzimologia , Biotransformação , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Hidroxilação , Espectrometria de Massas , Engenharia Metabólica , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Pseudomonas putida/enzimologia , Streptomyces/genética
4.
J Microbiol Biotechnol ; 22(7): 917-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580310

RESUMO

Homology modeling of Streptomyces peucetius CYP147F1 was constructed using three cytochrome P450 structures, CYP107L1, CYPVdh, and CYPeryF, as templates. The lowest energy SPCYP147F1 model was then assessed for stereochemical quality and side-chain environment by Accelrys Discovery Studio 3.1 software. Further activesite optimization of the SPCYP147F1 was performed by molecular dynamics to generate the final SPCYP147F1 model. The substrate limonene was then docked into the model. The model-limonene complex was used to validate the active-site architecture, and functionally important residues within the substrate recognition site were identified by subsequent characterization of the secondary structure. The docking of limonene suggested that SPCYP147F1 would have broad specificity with the ligand based on the two different orientations of limonene within the active site facing to the heme. Limonene with C7 facing the heme with distance of 3.4 Angstrom from the Fe was predominant.


Assuntos
Cicloexenos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Streptomyces/enzimologia , Terpenos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Simulação por Computador , Limoneno , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas de Plantas , Ligação Proteica , Homologia de Sequência de Aminoácidos , Software
5.
Appl Microbiol Biotechnol ; 93(2): 687-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21927992

RESUMO

A number of structurally diverse natural products harboring pyrrole moieties possess a wide range of biological activities. Studies on biosynthesis of pyrrole ring have shown that pyrrole moieties are derived from L-proline. Nargenicin A(1), a saturated alicyclic polyketide from Nocardia sp. CS682, is a pyrrole-2-carboxylate ester of nodusmicin. We cloned and identified a set of four genes from Nocardia sp. CS682 that show sequence similarity to the respective genes involved in the biosynthesis of the pyrrole moieties of pyoluteorin in Pseudomonas fluorescens, clorobiocin in Streptomyces roseochromogenes subsp. Oscitans, coumermycin A(1) in Streptomyces rishiriensis, one of the pyrrole rings of undecylprodigiosin in Streptomyces coelicolor, and leupyrrins in Sorangium cellulosum. These genes were designated as ngnN4, ngnN5, ngnN3, and ngnN2. In this study, we presented the evidences that the pyrrole moiety of nargenicin A(1) was also derived from L-proline by the coordinated action of three proteins, NgnN4 (proline adenyltransferase), NgnN5 (proline carrier protein), and NgnN3 (flavine-dependent acyl-coenzyme A dehydrogenases). Biosynthesis of pyrrole moiety in nargenicin A(1) is initiated by NgnN4 that catalyzes ATP-dependent activation of L-proline into L-prolyl-AMP, and the latter is transferred to NgnN5 to create prolyl-S-peptidyl carrier protein (PCP). Later, NgnN3 catalyzes the two-step oxidation of prolyl-S-PCP into pyrrole-2-carboxylate. Thus, this study presents another example of a pyrrole moiety biosynthetic pathway that uses a set of three genes to convert L-proline into pyrrole-2-carboxylic acid moiety.


Assuntos
Vias Biossintéticas/genética , Nocardia/metabolismo , Pirróis/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Genes Bacterianos , Lactonas/metabolismo , Nocardia/genética , Prolina/metabolismo , Transferases/genética , Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...