Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Diet Suppl ; 20(5): 673-688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35615864

RESUMO

Blackeye peas (Vigna unguiculata L. Walp.) are mainly used as a vegetable throughout the world, however they may contain significant concentrations of quercetin, myricetin, cyanidin, and delphinidin for potential use as a functional vegetable. Thirty-eight blackeye pea genotypes were selected from the core collection in the USDA, ARS, Plant Genetic Resources Conservation Unit's cold storage at 4 °C during 2016. Information regarding concentrations of quercetin, myricetin, cyanidin, delphindin, and correlations among these as well as additional seed traits including seed coat color, seed pattern color, seed pattern, seed texture, and years in storage would add value to the blackeye pea genotypes for use as a functional vegetable. Using high performance liquid chromatography (HPLC), the red seeded accession originating from Mozambique, PI 367927 produced the highest quercetin (469.53 µg/g) and myricetin (212.23 µg/g) concentrations. The black seeded genotype, PI 353236, originating from India, produced the highest cyanidin (1,388.82 µg/g) concentration. However, PI 353236 and the brown seeded genotype, PI 353352 from India produced the highest concentrations of delphinidin (1,343.27 and 1,353.94 µg/g), respectively. Several correlations were observed and interestingly only delphinidin showed a significant negative correlation (r = -0.293*) with years in cold storage indicating that delphinidin declined in the seeds stored the longest (from 4-45 years) at 4 °C. Principal component analysis (PCA) explained how the flavonols, anthocyanidins, and the additional seed traits contributed to the variation of the blackeye pea genotypes. The cluster analysis showed six clusters representing low to high phytochemical concentrations. The genetic parameters including σ2g, σ2p, GCV, PCV, h2h, and GG indicate that improvement in these phytochemical traits is possible through selection. The genotypic and phenotypic correlations showed that improving one phytochemical significantly improved the other except for cyanidin with delphinidin. These results can be used by scientists to develop blackeye pea cultivars with high flavonol and anthocyanidin concentrations.


Assuntos
Antocianinas , Vigna , Pisum sativum/genética , Verduras , Quercetina , Flavonóis/análise , Genótipo , Compostos Fitoquímicos , Variação Genética
2.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501386

RESUMO

Although both salinity and alkalinity result from accumulation of soluble salts in soil, high pH and ionic imbalance make alkaline stress more harmful to plants. This study aimed to provide molecular insights into the alkalinity tolerance using a recombinant inbred line (RIL) population developed from a cross between Cocodrie and Dular with contrasting response to alkalinity stress. Forty-six additive QTLs for nine morpho-physiological traits were mapped on to a linkage map of 4679 SNPs under alkalinity stress at the seedling stage and seven major-effect QTLs were for alkalinity tolerance scoring, Na+ and K+ concentrations and Na+:K+ ratio. The candidate genes were identified based on the comparison of the impacts of variants of genes present in five QTL intervals using the whole genome sequences of both parents. Differential expression of no apical meristem protein, cysteine protease precursor, retrotransposon protein, OsWAK28, MYB transcription factor, protein kinase, ubiquitin-carboxyl protein, and NAD binding protein genes in parents indicated their role in response to alkali stress. Our study suggests that the genetic basis of tolerance to alkalinity stress is most likely different from that of salinity stress. Introgression and validation of the QTLs and genes can be useful for improving alkalinity tolerance in rice at the seedling stage and advancing understanding of the molecular genetic basis of alkalinity stress adaptation.

3.
Plants (Basel) ; 8(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766434

RESUMO

Drought is a major constraint in some rice-growing areas of the United States. Its impact is most severe at the reproductive stage resulting in low grain yield. Therefore, assessment of genetic and phenotypic variation for drought tolerance in US rice germplasm is necessary to accelerate the breeding effort. Evaluation of 205 US rice genotypes for drought tolerance at the reproductive stage revealed tolerant response in rice genotypes Bengal, Jupiter, Cypress, Jazzman, Caffey, and Trenasse. Harvest index and fresh shoot weight were identified as important traits to explain the majority of variability among the genotypes under drought tolerance. Genotyping with 80 SSR markers indicated a low level of genetic diversity in US germplasm. Population structure analysis grouped the genotypes into eight clusters. The genotypes from California, Louisiana, and Arkansas formed distinct subgroups. Texas genotypes were similar to those from Louisiana and Arkansas. Marker-trait association analysis showed significant association of RM570 and RM351 with grain yield, spikelet fertility, and harvest index whereas shoot dry weight showed association with RM302 and RM461. The drought-tolerant genotypes identified in this study and the SSR markers associated with drought tolerance attributes will be helpful for development of improved drought-tolerant rice varieties through marker assisted selection.

4.
Gene ; 669: 69-76, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29802991

RESUMO

Drought stress at the reproductive stage of rice crop leads to a huge loss in grain yield. Identification and introgression of large effect drought tolerant QTLs are necessary to develop drought-tolerant rice varieties. Compared to the high-density linkage maps, widely spaced markers lead to the identification of QTLs with large confidence intervals which are difficult to incorporate in a breeding program. A previously generated genotyping-by-sequencing (GBS) based linkage map consisting of 4748 SNP markers was used to map QTLs in Cocodrie × N-22 recombinant inbred line (RIL) population. Twenty-one QTLs were discovered for days to flowering (DTF), plant height (PH), leaf rolling score (LRS), plant dry matter content (DM), spikelet fertility (SF), grain yield (GY), yield index (YI), and harvest index (HI) under drought stress. A major QTL qPH1.38 was identified in a narrow confidence interval on chromosome 1. The QTLs, qDTF3.01 and qPH1.38, overlapped with the previously identified QTL qDTY1.1 and Hd9, respectively. Another large-effect QTL qLRS1.37 was identified close to the sd1 locus on chromosome 1. A grain yield QTL qGY1.42 located on chromosome 1 contained only 4 candidate genes. There was no overlapping of QTLs for the root traits and the yield attributes. The important candidate genes present within the large effect QTL regions are MYB transcription factors, no apical meristem protein (NAC), potassium channel protein, nuclear matrix protein1, and chlorophyll A-B binding protein. The large effect QTLs (qDTF3.01, qPH1.38, and qLRS1.37) and a novel grain yield QTL qGYS1.42 can be used to incorporate in elite breeding lines to develop drought-tolerant rice varieties.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Secas , Expressão Gênica , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Análise de Componente Principal , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA