Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomed J ; 46(5): 100610, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37263539

RESUMO

Gut microbiota influence host immunity and metabolism during obesity. Bacterial sensors of the innate immune system relay signals from specific bacterial components (i.e., postbiotics) that can have opposing outcomes on host metabolic inflammation. NOD-like receptors (NLRs) such as Nod1 and Nod2 both recruit receptor-interacting protein kinase 2 (RIPK2) but have opposite effects on blood glucose control. Nod1 connects bacterial cell wall-derived signals to metabolic inflammation and insulin resistance, whereas Nod2 can promote immune tolerance, insulin sensitivity, and better blood glucose control during obesity. NLR family pyrin domain containing (NLRP) inflammasomes can also generate divergent metabolic outcomes. NLRP1 protects against obesity and metabolic inflammation potentially because of a bias toward IL-18 regulation, whereas NLRP3 appears to have a bias toward IL-1ß-mediated metabolic inflammation and insulin resistance. Targeting specific postbiotics that improve immunometabolism is a key goal. The Nod2 ligand, muramyl dipeptide (MDP) is a short-acting insulin sensitizer during obesity or during inflammatory lipopolysaccharide (LPS) stress. LPS with underacylated lipid-A antagonizes TLR4 and counteracts the metabolic effects of inflammatory LPS. Providing underacylated LPS derived from Rhodobacter sphaeroides improved insulin sensitivity in obese mice. Therefore, certain types of LPS can generate metabolically beneficial metabolic endotoxemia. Engaging protective adaptive immunoglobulin immune responses can also improve blood glucose during obesity. A bacterial vaccine approach using an extract of the entire bacterial community in the upper gut promotes protective adaptive immune response and long-lasting improvements in blood glucose control. A key future goal is to identify and combine postbiotics that cooperate to improve blood glucose control.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Microbiota , Animais , Camundongos , Lipopolissacarídeos , Proteínas NLR , Inflamação , Obesidade/metabolismo
2.
STAR Protoc ; 3(1): 101098, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35072117

RESUMO

Postbiotics cooperate to influence immune and metabolic outcomes in the host. Here we describe a protocol for in vivo assessment of blood glucose control following acute administration of lipopolysaccharide (LPS) and peptidoglycan (PGN) in mice. This protocol can be adapted for testing a broad range of microbial molecules and ligands for host immune receptors. Experience with mouse handling is required. For complete details on the use and execution of this protocol, please refer to Anhê et al. (2021) and Cavallari et al. (2017).


Assuntos
Lipopolissacarídeos , Peptidoglicano , Animais , Parede Celular/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Peptidoglicano/metabolismo
3.
Front Bioeng Biotechnol ; 9: 630551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644021

RESUMO

Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...