Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 114: 85-98, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371053

RESUMO

l-DOPA remains the primary treatment for Parkinson's disease (PD). Unfortunately, its therapeutic benefits are compromised by the development of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID). The norepinephrine (NE) system originating in the locus coeruleus is profoundly affected in PD and known to influence dopamine (DA) signaling. However, the effect of noradrenergic loss on l-DOPA-induced striatal monoamine efflux and Parkinsonian motor behavior remains controversial and is frequently overlooked in traditional animal models of LID. Thus, the current study sought to determine whether degeneration of the DA and/or NE system(s) altered l-DOPA-induced striatal monoamine efflux in hemiparkinsonian rats with additional NE loss induced by the potent NE-toxin α DA beta hydroxylase (DBH)-saporin. Sham-, DA-, NE-, and dual DA + NE-lesioned rats were treated with l-DOPA (6 mg/kg, s.c.) for 2 weeks. Thereafter, l-DOPA-mediated striatal monoamine efflux was measured with in vivo microdialysis, and concurrent AIMs testing occurred to determine responsiveness to l-DOPA. Noradrenergic lesions exacerbated parkinsonian motor deficits but did not significantly alter LID expression or corresponding l-DOPA-induced striatal monoamine efflux. Interestingly, l-DOPA-induced striatal NE efflux rather than DA efflux, corresponded more closely with dyskinesia severity. Moreover, marked reductions in striatal NE tissue concentration did not appear to impact l-DOPA-induced striatal NE efflux. The current study implicates l-DOPA-induced striatal NE as an important factor in LID expression and demonstrates the importance of developing treatment strategies that co-modulate the NE and DA systems.


Assuntos
Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Norepinefrina/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley
2.
J Neurochem ; 134(2): 222-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25866285

RESUMO

Dopamine (DA) replacement therapy with L-DOPA continues to be the primary treatment of Parkinson's disease; however, long-term therapy is accompanied by L-DOPA-induced dyskinesias (LID). Several experimental and clinical studies have established that Propranolol, a ß-adrenergic receptor antagonist, reduces LID without affecting L-DOPA's efficacy. However, the exact mechanisms underlying these effects remain to be elucidated. The aim of this study was to evaluate the anti-dyskinetic profile of Propranolol against a panel of DA replacement strategies, as well as elucidate the underlying neurochemical mechanisms. Results indicated that Propranolol, in a dose-dependent manner, reduced LID, without affecting motor performance. Propranolol failed to alter dyskinesia produced by the D1 receptor agonist, SKF81297 (0.08 mg/kg, sc), or the D2 receptor agonist, Quinpirole (0.05 mg/kg, sc). These findings suggested a pre-synaptic mechanism for Propranolol's anti-dyskinetic effects, possibly through modulating L-DOPA-mediated DA efflux. To evaluate this possibility, microdialysis studies were carried out in the DA-lesioned striatum of dyskinetic rats and results indicated that co-administration of Propranolol (20 mg/kg, ip) was able to attenuate L-DOPA- (6 mg/kg, sc) induced DA efflux. Therefore, Propranolol's anti-dyskinetic properties appear to be mediated via attenuation of L-DOPA-induced extraphysiological efflux of DA.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/prevenção & controle , Transtornos Parkinsonianos/metabolismo , Propranolol/farmacologia , Animais , Antiparkinsonianos/efeitos adversos , Cromatografia Líquida de Alta Pressão , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Masculino , Microdiálise , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Neuropharmacology ; 95: 215-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25817388

RESUMO

Long-term l-DOPA use for Parkinson's disease (PD) is frequently complicated by the emergence of a debilitating motor side effect known as l-DOPA-induced dyskinesia (LID). Accumulating evidence has implicated the norepinephrine (NE) system in the pathogenesis of LID. Here we used the unilateral 6-hydroxydopamine rat model of PD to determine the role of the α2-adrenoceptors (α2R) in l-DOPA's therapeutic and detrimental motor-inducing effects. First, we characterized the effects of systemic α2R stimulation with clonidine, or blockade with atipamezole, on LID using the rodent abnormal involuntary movements scale, and l-DOPA's therapeutic effects using the forepaw adjusting steps test and locomotor activity chambers. The anatomical locus of action of α2R in LID was investigated by directly infusing clonidine or atipamezole into the locus coeruleus prior to systemic l-DOPA administration. Results showed systemic clonidine treatment reduced LID and locomotor activity but did not interfere with l-DOPA's antiparkinsonian benefits. Conversely, systemic atipamezole pretreatment prolonged LID and locomotor activity but did not modulate l-DOPA's antiparkinsonian benefits. Intra-LC infusions of clonidine and atipamezole mirrored systemic effects where clonidine reduced, and atipamezole increased, LID. Collectively, these results demonstrate that α2R play an important modulatory role in l-DOPA-mediated behaviors and should be further investigated as a potential therapeutic target.


Assuntos
Antiparkinsonianos/farmacologia , Antiparkinsonianos/toxicidade , Levodopa/farmacologia , Levodopa/toxicidade , Locus Cerúleo/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Clonidina/farmacologia , Discinesia Induzida por Medicamentos/fisiopatologia , Imidazóis/farmacologia , Locus Cerúleo/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Oxidopamina , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Ratos Sprague-Dawley
4.
Psychopharmacology (Berl) ; 227(3): 533-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23389756

RESUMO

RATIONALE: L-DOPA continues to be the primary treatment for patients with Parkinson's disease; however, the benefits of long-term treatment are often accompanied by debilitating side effects known as dyskinesias. In recent years, several 5-HT1A receptor agonists have been found to reduce dyskinesia in clinical and experimental models of PD. The purported sigma-1 antagonist, BMY-14802 has been previously demonstrated to reduce L-DOPA induced dyskinesia in a 5-HT1A receptor dependent manner. OBJECTIVE: In the present study, we extend these findings by examining the anti-dyskinetic potential of BMY-14802 against L-DOPA, the D1 receptor agonist SKF81297 and the D2 receptor agonist, quinpirole, in the hemi-parkinsonian rat model. In addition, the receptor specificity of BMY-14802's effects was evaluated using WAY-100635, a 5-HT1A receptor antagonist. RESULTS: Results confirmed the dose-dependent (20 > 10 > 5 mg/kg) anti-dyskinetic effects of BMY-14802 against L-DOPA with preservation of anti-parkinsonian efficacy at 10 mg/kg. BMY-14802 at 10 and 20 mg/kg also reduced dyskinesia induced by both D1 and D2 receptor agonists. Additionally, BMY-14802's anti-dyskinetic effects against L-DOPA, but not SKF81297 or quinpirole, were reversed by WAY-100635 (0.5 mg/kg). CONCLUSION: Collectively, these findings demonstrate that BMY-14802 provides anti-dyskinetic relief against L-DOPA and direct DA agonist in a preclinical model of PD, acting via multiple receptor systems and supports the utility of such compounds for the improved treatment of PD.


Assuntos
Antiparkinsonianos/efeitos adversos , Agonistas de Dopamina/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Pirimidinas/uso terapêutico , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/etiologia , Levodopa/administração & dosagem , Levodopa/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Dopamina D1/metabolismo
5.
Brain Res Bull ; 91: 52-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23318273

RESUMO

Recent studies have demonstrated that a preconditioning regimen (i.e., repeated low doses) of MDMA provides protection against the reductions in tissue concentrations of 5-HT and 5-HT transporter (SERT) density and/or expression produced by a subsequent binge regimen of MDMA. In the present study, the effects of preconditioning and binge treatment regimens of MDMA on SERT function were assessed by synaptosomal 5-HT uptake. Synaptosomal 5-HT uptake was reduced by 72% 7 days following the binge regimen (10 mg/kg, i.p. every 2 h for a total of 4 injections). In rats exposed to the preconditioning regimen of MDMA (daily treatment with 10 mg/kg for 4 days), the reduction in synaptosomal 5-HT uptake induced by a subsequent binge regimen was significantly less. Treatment with the preconditioning regimen alone resulted in a transient 46% reduction in 5-HT uptake that was evident 1 day, but not 7 days, following the last injection of MDMA. Furthermore, the preconditioning regimen of MDMA did not alter tissue concentrations of 5-HT, whereas the binge regimen of MDMA resulted in a long-term reduction of 40% of tissue 5-HT concentrations. The distribution of SERT immunoreactivity (ir) in membrane and endosomal fractions of the hippocampus also was evaluated following the preconditioning regimen of MDMA. There was no significant difference in the relative distribution of SERTir between these two compartments in control and preconditioned rats. The results demonstrate that SERT function is transiently reduced in response to a preconditioning regimen of MDMA, while long-term reductions in SERT function occur in response to a binge regimen of MDMA. Moreover, a preconditioning regimen of MDMA provides protection against the long-term reductions in SERT function evoked by a subsequent binge regimen of the drug. It is tempting to speculate that the neuroprotective effect of MDMA preconditioning results from a transient down-regulation in SERT function.


Assuntos
Química Encefálica/efeitos dos fármacos , Alucinógenos/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Western Blotting , Química Encefálica/fisiologia , Cromatografia Líquida de Alta Pressão , Masculino , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Sinaptossomos/metabolismo
6.
Pharmacol Biochem Behav ; 100(3): 607-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21978941

RESUMO

While L-3,4-dihydroxyphenylalanine (L-DOPA) remains the standard treatment for Parkinson's disease (PD), long-term efficacy is often compromised by L-DOPA-induced dyskinesia (LID). Recent research suggests that targeting the noradrenergic (NE) system may provide relief from both PD and LID, however, most PD patients exhibit NE loss which may modify response to such strategies. Therefore this investigation aimed to characterize the development and expression of LID and the anti-dyskinetic potential of the α2- and ß-adrenergic receptor antagonists idazoxan and propranolol, respectively, in rats receiving 6-OHDA lesions with (DA lesion) or without desipramaine protection (DA+NE lesion). Male Sprague-Dawley rats (N=110) received unilateral 6-hydroxydopamine lesions. Fifty-three rats received desipramine to protect NE neurons (DA lesion) and 57 received no desipramine reducing striatal and hippocampal NE content 64% and 86% respectively. In experiment 1, the development and expression of L-DOPA-induced abnormal involuntary movements (AIMs) and rotations were examined. L-DOPA efficacy using the forepaw adjusting steps (FAS) test was also assessed in DA- and DA+NE-lesioned rats. In experiment 2, DA- and DA+NE-lesioned rats received pre-treatments of idazoxan or propranolol followed by L-DOPA after which the effects of these adrenergic compounds were observed. Results demonstrated that moderate NE loss reduced the development and expression of AIMs and rotations but not L-DOPA efficacy while anti-dyskinetic efficacy of α2- and ß-adrenergic receptor blockade was maintained. These findings suggest that the NE system modulates LID and support the continued investigation of adrenergic compounds for the improved treatment of PD.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Antagonistas Adrenérgicos alfa/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Corpo Estriado/fisiopatologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Hipocampo/fisiopatologia , Levodopa/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Desipramina/farmacologia , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/fisiopatologia , Hipocampo/efeitos dos fármacos , Idazoxano/uso terapêutico , Levodopa/uso terapêutico , Masculino , Terapia de Alvo Molecular , Fármacos Neuroprotetores/farmacologia , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Propranolol/uso terapêutico , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Simpatectomia Química
7.
J Pharmacol Exp Ther ; 337(3): 755-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21402691

RESUMO

Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as L-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective ß-adrenergic receptor (ßAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with L-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF L-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through ßAR blockade, we subsequently examined each enantiomer separately because only the (-)enantiomer has significant ßAR affinity. We next investigated the effects of a localized striatal ßAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic L-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (-)propranolol had anti-LID properties indicating ßAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through ßAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Antiparkinsonianos/toxicidade , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/toxicidade , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Benzoxazinas , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/diagnóstico , Discinesia Induzida por Medicamentos/metabolismo , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Terapia de Alvo Molecular , Oxazinas , Oxidopamina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta , Fatores de Tempo
8.
Eur J Pharmacol ; 644(1-3): 67-72, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20633550

RESUMO

The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10mg/kg, i.p.) resulted in a significant and sustained increase of 65-100% in the extracellular concentration of glucose in the striatum, as well as in the prefrontal cortex and hippocampus, and a 35% decrease in brain glycogen content. Peripheral blood glucose was modestly increased by 32% after MDMA treatment. Treatment of rats with fluoxetine (10mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose in the striatum but had no effect on MDMA-induced glycogenolysis or hyperthermia. Treatment with prazosin (1mg/kg, i.p.) did not alter the glucose or glycogen responses to MDMA but completely suppressed MDMA-induced hyperthermia. Finally, propranolol (3mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose and glycogenolysis but did not alter MDMA-induced hyperthermia. The present results suggest that MDMA increases extracellular glucose in multiple brain regions, and that this response involves both serotonergic and noradrenergic mechanisms. Furthermore, beta-adrenergic and alpha-adrenergic receptors appear to contribute to MDMA-induced glycogenolysis and hyperthermia, respectively. Finally, hyperthermia, glycogenolysis and elevated extracellular glucose appear to be independent, unrelated responses to acute MDMA administration.


Assuntos
Glucose/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Norepinefrina/metabolismo , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Febre/induzido quimicamente , Fluoxetina/farmacologia , Glicogenólise/efeitos dos fármacos , Masculino , Prazosina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa/efeitos dos fármacos , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo
9.
Brain Res ; 1286: 32-41, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19555677

RESUMO

Repeated exposure to sub-lethal insults has been reported to result in neuroprotection against a subsequent deleterious insult. The purpose of this study was to evaluate whether repeated exposure (preconditioning) to a non-5-HT depleting dose of MDMA in adult rats provides neuroprotection against subsequent MDMA-induced 5-HT depletion. Treatment of rats with MDMA (10 mg/kg, ip every 2 h for 4 injections) resulted in a 50-65% depletion of 5-HT in the striatum, hippocampus and cortex, and these depletions were significantly attenuated in rats that received a preconditioning regimen of MDMA (10 mg/kg, ip daily for 4 days). The 5-HT depleting regimen of MDMA also resulted in a 40-80% reduction in 5-HT transporter immunoreactivity (SERT(ir)), and the reduction in SERT(ir) also was completely attenuated in MDMA-preconditioned animals. Preconditioning with MDMA (10 mg/kg, ip) daily for 4 days provided neuroprotection against methamphetamine-induced 5-HT depletion, but not dopamine depletion, in the striatum. Additional studies were conducted to exclude the possibility that alterations in MDMA pharmacokinetics or MDMA-induced hyperthermia in rats previously exposed to MDMA contribute towards neuroprotection. During the administration of the 5-HT depleting regimen of MDMA, there was no difference in the extracellular concentration of the drug in the striatum of rats that had received 4 prior, daily injections of vehicle or MDMA. Moreover, there was no difference in the hyperthermic response to the 5-HT depleting regimen of MDMA in rats that had earlier received 4 daily injections of vehicle or MDMA. Furthermore, hyperthermia induced by MDMA during preconditioning appears not to contribute towards neuroprotection, inasmuch as preconditioning with MDMA at a low ambient temperature at which hyperthermia was absent did not alter the neuroprotection provided by the preconditioning regimen. Thus, prior exposure to MDMA affords protection against the long-term depletion of brain 5-HT produced by subsequent MDMA administration. The mechanisms underlying preconditioning-induced neuroprotection for MDMA remain to be determined.


Assuntos
Encéfalo/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Western Blotting , Encéfalo/metabolismo , Dopamina/metabolismo , Febre/induzido quimicamente , Metanfetamina/farmacologia , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/efeitos dos fármacos , Ratos , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...