Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Access ; 9: 145334-145362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824964

RESUMO

Functional magnetic resonance imaging (fMRI) is a powerful, noninvasive tool that has significantly contributed to the understanding of the human brain. FMRI data provide a sequence of whole-brain volumes over time and hence are inherently four dimensional (4D). Missing data in fMRI experiments arise from image acquisition limits, susceptibility and motion artifacts or during confounding noise removal. Hence, significant brain regions may be excluded from the data, which can seriously undermine the quality of subsequent analyses due to the significant number of missing voxels. We take advantage of the four dimensional (4D) nature of fMRI data through a tensor representation and introduce an effective algorithm to estimate missing samples in fMRI data. The proposed Riemannian nonlinear spectral conjugate gradient (RSCG) optimization method uses tensor train (TT) decomposition, which enables compact representations and provides efficient linear algebra operations. Exploiting the Riemannian structure boosts algorithm performance significantly, as evidenced by the comparison of RSCG-TT with state-of-the-art stochastic gradient methods, which are developed in the Euclidean space. We thus provide an effective method for estimating missing brain voxels and, more importantly, clearly show that taking the full 4D structure of fMRI data into account provides important gains when compared with three-dimensional (3D) and the most commonly used two-dimensional (2D) representations of fMRI data.

2.
J Neurosci Methods ; 358: 109214, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957159

RESUMO

BACKGROUND: Data-driven methods such as independent component analysis (ICA) makes very few assumptions on the data and the relationships of multiple datasets, and hence, are attractive for the fusion of medical imaging data. Two important extensions of ICA for multiset fusion are the joint ICA (jICA) and the multiset canonical correlation analysis and joint ICA (MCCA-jICA) techniques. Both approaches assume identical mixing matrices, emphasizing components that are common across the multiple datasets. However, in general, one would expect to have components that are both common across the datasets and distinct to each dataset. NEW METHOD: We propose a general framework, disjoint subspace analysis using ICA (DS-ICA), which identifies and extracts not only the common but also the distinct components across multiple datasets. A key component of the method is the identification of these subspaces and their separation before subsequent analyses, which helps establish better model match and provides flexibility in algorithm and order choice. COMPARISON: We compare DS-ICA with jICA and MCCA-jICA through both simulations and application to multiset functional magnetic resonance imaging (fMRI) task data collected from healthy controls as well as patients with schizophrenia. RESULTS: The results show DS-ICA estimates more components discriminative between healthy controls and patients than jICA and MCCA-jICA, and with higher discriminatory power showing activation differences in meaningful regions. When applied to a classification framework, components estimated by DS-ICA results in higher classification performance for different dataset combinations than the other two methods. CONCLUSION: These results demonstrate that DS-ICA is an effective method for fusion of multiple datasets.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Análise Multivariada , Esquizofrenia/diagnóstico por imagem
3.
Brain Connect ; 11(6): 430-446, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724055

RESUMO

Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant clinical importance due to a need to study the heterogeneity of schizophrenia. Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to investigate the relationship between dBA and dynamic FNC (dFNC). Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA) patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms. Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the use of neuroimaging in studying the heterogeneity of disorders. Impact statement This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional magnetic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of the human brain, especially the brain with a mental disorder.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Oxigênio , Esquizofrenia/diagnóstico por imagem
4.
J Neurosci Methods ; 350: 109039, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33370561

RESUMO

BACKGROUND: Dynamic functional network connectivity (dFNC) summarizes associations among time-varying brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to investigate spatial variability and the interaction between temporal and spatial variability. NEW METHOD: We propose to use an adaptive variant of constrained independent vector analysis to simultaneously capture temporal and spatial variability, and introduce a goal-driven scheme for addressing a key challenge in dFNC analysis---determining the number of transient states. We apply our methods to resting-state functional magnetic resonance imaging data of schizophrenia patients (SZs) and healthy controls (HCs). RESULTS: The results show spatial variability provides more features discriminative between groups than temporal variability. A comprehensive study of graph-theoretical (GT) metrics determines the optimal number of spatial states and suggests centrality as a key metric. Four networks yield significantly different levels of involvement in SZs and HCs. The high involvement of a component that relates to multiple distributed brain regions highlights dysconnectivity in SZ. One frontoparietal component and one frontal component demonstrate higher involvement in HCs, suggesting a more efficient cognitive control system relative to SZs. COMPARISON WITH EXISTING METHODS: Spatial variability is more informative than temporal variability. The proposed goal-driven scheme determines the optimal number of states in a more interpretable way by making use of discriminative features. CONCLUSION: GT analysis is promising in dFNC analysis as it identifies distinctive transient spatial states of dFNC and reveals unique biomedical patterns in SZs.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem
5.
IEEE J Sel Top Signal Process ; 14(6): 1255-1264, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33343785

RESUMO

There is a growing need for flexible methods for the analysis of large-scale functional magnetic resonance imaging (fMRI) data for the estimation of global signatures that summarize the population while preserving individual-specific traits. Independent vector analysis (IVA) is a data-driven method that jointly estimates global spatio-temporal patterns from multi-subject fMRI data, and effectively preserves subject variability. However, as we show, IVA performance is negatively affected when the number of datasets and components increases especially when there is low component correlation across the datasets. We study the problem and its relationship with respect to correlation across the datasets, and propose an effective method for addressing the issue by incorporating reference information of the estimation patterns into the formulation, as a guidance in high dimensional scenarios. Constrained IVA (cIVA) provides an efficient framework for incorporating references, however its performance depends on a user-defined constraint parameter, which enforces the association between the reference signals and estimation patterns to a fixed level. We propose adaptive cIVA (acIVA) that tunes the constraint parameter to allow flexible associations between the references and estimation patterns, and enables incorporating multiple reference signals, without enforcing inaccurate conditions. Our results indicate that acIVA can reliably estimate high-dimensional multivariate sources from large-scale simulated datasets, when compared with standard IVA. It also successfully extracts meaningful functional networks from a large-scale fMRI dataset for which standard IVA did not converge. The method also efficiently captures subject-specific information, which is demonstrated through observed gender differences in spectral power, higher spectral power in males at low frequencies and in females at high frequencies, within the motor, attention, visual and default mode networks.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1683-1686, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018320

RESUMO

In application to functional magnetic resonance imaging (fMRI) data analysis, a number of data fusion algorithms have shown success in extracting interpretable brain networks that can distinguish two groups such two populations-patients with mental disorder and the healthy controls. However, there are situations where more than two groups exist such as the fusion of multi-task fMRI data. Therefore, in this work we propose the use of IVA to effectively extract information that is able to distinguish across multiple groups when applied to data fusion. The performance of IVA is investigated using a simulated fMRI-like data. The simulation results illustrate that IVA with multivariate Laplacian distribution and second-order statistics (IVA-L-SOS) yields better performance compared to joint independent component analysis and IVA with multivariate Gaussian distribution in terms of both estimation accuracy and robustness. When applied to real multi-task fMRI data, IVA-L-SOS successfully extract task-related brain networks that are able to distinguish three tasks.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos
7.
Neuroimage ; 216: 116872, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353485

RESUMO

The extraction of common and distinct biomedical signatures among different populations allows for a more detailed study of the group-specific as well as distinct information of different populations. A number of subspace analysis algorithms have been developed and successfully applied to data fusion, however they are limited to joint analysis of only a couple of datasets. Since subspace analysis is very promising for analysis of multi-subject medical imaging data as well, we focus on this problem and propose a new method based on independent vector analysis (IVA) for common subspace extraction (IVA-CS) for multi-subject data analysis. IVA-CS leverages the strength of IVA in identification of a complete subspace structure across multiple datasets along with an efficient solution that uses only second-order statistics. We propose a subset analysis approach within IVA-CS to mitigate issues in estimation in IVA due to high dimensionality, both in terms of components estimated and the number of datasets. We introduce a scheme to determine a desirable size for the subset that is high enough to exploit the dependence across datasets and is not affected by the high dimensionality issue. We demonstrate the success of IVA-CS in extracting complex subset structures and apply the method to analysis of functional magnetic resonance imaging data from 179 subjects and show that it successfully identifies shared and complementary brain patterns from patients with schizophrenia (SZ) and healthy controls group. Two components with linked resting-state networks are identified to be unique to the SZ group providing evidence of functional dysconnectivity. IVA-CS also identifies subgroups of SZs that show significant differences in terms of their brain networks and clinical symptoms.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Simulação por Computador , Conectoma/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem
8.
Front Neurosci ; 13: 1006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607848

RESUMO

Dynamic functional network connectivity (dFNC) analysis is a widely-used to study associations between dynamic functional correlations and cognitive abilities. Traditional methods analyze time-varying association of different spatial networks while assuming that the spatial network itself is stationary. However, there has been very little work focused on voxelwise spatial variability. Exploiting the variability across both the temporal and spatial domains provide a more promising direction to obtain reliable dynamic functional patterns. However, methods for extracting time-varying spatio-temporal patterns from large-scale functional magnetic resonance imaging (fMRI) data present some challenges, such as degradation in performance with respect to increase in size of the data, estimation of the number of dynamic components, and the potential sensitivity of the resulting dFNCs to selection of the networks. In this work, we implement subsequent extraction of exemplars and dynamics using a constrained independent vector analysis, a data-driven method that efficiently estimates spatial and temporal dynamics from large-scale resting-state fMRI data. We explore the benefits of analyzing spatial dFNC (sdFNC) patterns over temporal dFNC (tdFNC) patterns in the context of differentiating healthy controls and patients with schizophrenia. Our results indicate that for resting-state fMRI data, sdFNC patterns were able to better classify patients and controls, and yield more distinguishing features compared with tdFNC patterns. We also estimate structured patterns of connectivity/states using sdFNC patterns, an area that has not been studied so far, and observe that sdFNC was able to successfully capture distinct information from healthy controls and patients with schizophrenia. In addition, sdFNC patterns were also able to identify functional patterns that associate with signs of paranoia and abnormalities in the patients group. We also observe that patients with schizophrenia tend to switch to or stay in a state corresponding to a hyperconnected brain network.

9.
J Neurosci Methods ; 326: 108356, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310824

RESUMO

BACKGROUND: Data driven analysis methods such as independent component analysis (ICA) offer the advantage of estimating subject contributions when used in a second-level analysis. With the traditionally used regression-based methods this is achieved with a design matrix that has to be specified a priori. NEW METHOD: We show that the ability of ICA to estimate subject contributions can be effectively used to perform steady-state as well as transient analysis of task functional magnetic resonance imaging (fMRI) data, which can help reveal important group differences. RESULTS: We apply the method to steady-state and transient analysis of block designed thermal pain stimulated fMRI data, and identify distinct sex differences, in parts of the pain matrix: brain stem, thalamus, amygdala, frontal pole (FP), temporal pole (TP), operculum (second somatosensory cortex, SII), anterior insular (AI), dorsal anterior cingulate cortex (dACC), and default mode network (DMN). We also show that the identified regions have significant correlation with weekly exercise and anxiety. Using transient analysis, we identify regions (SII, AI, dACC, DMN) specific to female group showing difference mainly in the initial stages of the experiments. COMPARISON WITH EXISTING METHOD: With exact same spatial components input in the second level, permutation analysis of linear models cannot identify any significant group difference. In addition, the proposed transient analysis cannot be realized if user is required to input a design matrix as is the case with regression-based analyses. CONCLUSIONS: The proposed two-level ICA is an effective multi-variate analysis method for both steady-state and transient analysis of task data.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Dor/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Modelos Teóricos , Rede Nervosa/diagnóstico por imagem , Dor/diagnóstico por imagem , Análise de Componente Principal , Fatores Sexuais
10.
IEEE Trans Med Imaging ; 38(7): 1715-1725, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30676948

RESUMO

Dynamic functional connectivity analysis is an effective way to capture the networks that are functionally associated and continuously changing over the scanning period. However, these methods mostly analyze the dynamic associations across the activation patterns of the spatial networks while assuming that the spatial networks are stationary. Hence, a model that allows for the variability in both domains and reduces the assumptions imposed on the data provides an effective way for extracting spatiotemporal networks. Independent vector analysis (IVA) is a joint blind source separation technique that allows for estimation of spatial and temporal features while successfully preserving variability. However, its performance is affected for higher number of datasets. Hence, we develop an effective two-stage method to extract time-varying spatial and temporal features using IVA, mitigating the problems with higher number of datasets while preserving the variability across subjects and time. The first stage is used to extract reference signals using group-independent component analysis (GICA) that are used in a parameter-tuned constrained IVA framework to estimate time-varying representations of these signals by preserving the variability through tuning the constraint parameter. This approach effectively captures variability across time from a large-scale resting-state fMRI data acquired from healthy controls and patients with schizophrenia and identifies more functionally relevant connections that are significantly different among healthy controls and patients with schizophrenia, compared with the widely used GICA method alone.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem
11.
Hum Brain Mapp ; 40(2): 489-504, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240499

RESUMO

Data-driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data-driven methods that are based on two different forms of diversity-statistical properties of the data-statistical independence for ICA and sparsity for DL. Despite their popularity, the comparative advantage of emphasizing one property over another in the decomposition of fMRI data is not well understood. Such a comparison is made harder due to the differences in the modeling assumptions between ICA and DL, as well as within different ICA algorithms where each algorithm exploits a different form of diversity. In this paper, we propose the use of objective global measures, such as time course frequency power ratio, network connection summary, and graph theoretical metrics, to gain insight into the role that different types of diversity have on the analysis of fMRI data. Four ICA algorithms that account for different types of diversity and one DL algorithm are studied. We apply these algorithms to real fMRI data collected from patients with schizophrenia and healthy controls. Our results suggest that no one particular method has the best performance using all metrics, implying that the optimal method will change depending on the goal of the analysis. However, we note that in none of the scenarios we test the highly popular Infomax provides the best performance, demonstrating the cost of exploiting limited form of diversity.


Assuntos
Algoritmos , Encéfalo/fisiologia , Interpretação Estatística de Dados , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Rede Nervosa/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Neuroimagem Funcional/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Análise de Componente Principal , Esquizofrenia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...