Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080646

RESUMO

A low-cost and effective flame retarding expanded polystyrene (EPS) foam was prepared herein by using a hybrid flame retardant (HFR) system, and the influence of gypsum was studied. The surface morphology and flame retardant properties of the synthesized flame retardant EPS were characterized using scanning electron microscopy (SEM) and cone calorimetry testing (CCT). The SEM micrographs revealed the uniform coating of the gypsum-based HFR on the EPS microspheres. The CCT and thermal conductivity study demonstrated that the incorporation of gypsum greatly decreases the peak heat release rate (PHRR) and total heat release (THR) of the flame retarding EPS samples with acceptable thermal insulation performance. The EPS/HFR with a uniform coating and the optimum amount of gypsum provides excellent flame retardant performance, with a THR of 8 MJ/m2, a PHRR of 53.1 kW/m2, and a fire growth rate (FIGRA) of 1682.95 W/m2s. However, an excessive amount of gypsum weakens the flame retardant performance. The CCT results demonstrate that a moderate gypsum content in the EPS/HFR sample provides appropriate flame retarding properties to meet the fire safety standards.

2.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451203

RESUMO

The compatibility and coating ratio between flame retardant materials and expanded polystyrene (EPS) foam is a major impediment to achieving satisfactory flame retardant performance. In this study, we prepared a water-based intumescent flame retardant system and methylene diphenyl diisocyanate (MDI)-coated expandable polystyrene microspheres by a simple coating approach. We investigated the compatibility, coating ratio, and fire performance of EPS- and MDI-coated EPS foam using a water-based intumescent flame retardant system. The microscopic study revealed that the water-based intumescent flame retardant materials were successfully incorporated with and without MDI-coated EPS microspheres. The cone calorimeter tests (CCTs) of the MDI-coated EPS containing water-based intumescent flame retardant materials exhibited better flame retardant performance with a lower total heat release (THR) 7.3 MJ/m2, peak heat release rate (PHRR) 57.6 kW/m2, fire growth rate (FIGRA) 2027.067 W/m2.s, and total smoke production (TSP) 0.133 m2. Our results demonstrated that the MDI-coated EPS containing water-based intumescent flame retardant materials achieved flame retarding properties as per fire safety standards.

3.
ACS Appl Mater Interfaces ; 12(7): 8098-8106, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31994862

RESUMO

Perovskite solar cells (PSCs) have experienced outstanding advances in power conversion efficiencies (PCEs) by employing new electron transport layers (ETLs), interface engineering, optimizing perovskite morphology, and improving charge collection efficiency. In this work, we study the role of a new ultrathin interface layer of titanium nitride (TiN) conformally deposited on a mesoporous TiO2 (mp-TiO2) scaffold using the atomic layer deposition method. Our characterization results revealed that the presence of TiN at the ETL/perovskite interface improves the charge collection as well as reduces the interface recombination. We find that the morphology (grain size) and optical properties of the perovskite film deposited on the optimized mp-TiO2/TiN ETL are improved drastically, leading to devices with a maximum PCE of 19.38% and a high open-circuit voltage (Voc) of 1.148 V with negligible hysteresis and improved environmental (∼40% RH) and thermal (80 °C) stabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...