Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Indian Soc Periodontol ; 20(1): 50-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27041838

RESUMO

BACKGROUND: The combination of biomaterials, bone graft substitutes along with guided tissue regeneration (GTR) has been shown to be an effective modality of periodontal regenerative therapy for infrabony defects. Therefore, the present randomized controlled clinical study was undertaken to evaluate the effectiveness of hyaluronic acid (HA) in combination with bioresorbable membrane for the treatment of human infrabony defects. MATERIALS AND METHODS: Twenty four infrabony defects in 20 systemically healthy patients were randomly assigned to test (HA in combination with bioresorbable membrane) and control (bioresorbable membrane alone) treatment groups. Probing pocket depth (PPD), relative attachment level, and relative gingival margin level were measured with a computerized Florida disc probe at baseline and at 6 months follow-up. Radiographic measurements were also evaluated at baseline and at 6 months of postsurgery. RESULTS: At 6 months, the mean reduction in PPD in test group and control group was 4.52 mm and 2.97 mm, respectively. Significantly higher clinical attachment level with a gain of 2.20 mm was found in the test group as compared to control group. In addition, statistically significant greater reduction of radiographic defect depth was observed in the test group. CONCLUSION: Regenerative approach using hyaloss in combination with GTR for the treatment of human infrabony defects resulted in a significant added benefit in terms of CAL gains, PPD reductions and radiographic defect fill, as well as LBG, compared to the GTR alone.

2.
J Indian Soc Periodontol ; 18(4): 433-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25210255

RESUMO

Recent advances in periodontal plastic surgical procedures allow the clinician to reconstruct deficient alveolar ridges in more predictable ways than previously possible. Placement of implant/s in resorbed ridges poses numerous challenges to the clinician for successful esthetic and functional rehabilitation. The reconstruction frequently utilizes one or combination of periodontal plastic surgical procedures in conjunction with autogenous bone grafting, allogenic bone block grafting, ridge split techniques, distraction osteogenesis, or guided bone regeneration (GBR) for most predictable outcomes. Current surgical modalities used in reconstruction of alveolar ridge (horizontal and/or vertical component) often involve the need of flap transfer. Moreover, there is compromise in tissue integrity and color match owing to different surgical site and the tissue utilized is insufficient in quantity leading to post surgical graft exposition and/or loss of grafted bone. Soft tissue expansion (STE) by implantation of inflatable silicone balloon or self filling osmotic tissue expanders before reconstructive surgery can overcome these disadvantages and certainly holds a promise for effective method for generation of soft tissue thereby achieving predictable augmentation of deficient alveolar ridges for the implant success. This article focuses and compares these distinct tissue expanders for their clinical efficacy of achieving excess tissue that predominantly seems to be prerequisite for ridge augmentation which can be reasonably followed by successful placement of endosseous fixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...