Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Cells Nanomed Biotechnol ; 52(1): 35-45, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112317

RESUMO

Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.


Assuntos
Aloe , Hemostáticos , Sericinas , Embrião de Galinha , Animais , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alginatos/farmacologia , Alginatos/química , Aloe/química , Hemostáticos/farmacologia , Alicerces Teciduais/química , Antibacterianos/farmacologia , Antibacterianos/química , Hemostasia
2.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904445

RESUMO

Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.

3.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839684

RESUMO

Human placenta is loaded with an enormous amount of endogenous growth factors, thereby making it a superior biomaterial for tissue regeneration. Sericin is a naturally occurring silk protein that is extensively used for biomedical applications. In the present work, sericin and human placenta-derived extracellular matrix were blended and fabricated in the form of scaffolds using the freeze-drying method for cutaneous wound treatment. The prepared sericin/placenta-derived extracellular matrix (SPEM) scaffolds were characterized to determine their morphology, functional groups, mechanical strength, and antibacterial activity. Scanning electron microscopic analysis of the scaffolds showed smooth surfaces with interconnected pores. In vitro MTT and scratch wound assays performed using HaCaT cells proved the non-toxic and wound-healing efficacy of SPEM scaffolds. In vivo CAM assay using fertilized chick embryos proved the angiogenic potency of the scaffolds. Animal experiments using Wistar albino rats proved that the open excision wounds treated with SPEM scaffolds significantly reduced wound size with collagen deposition. These results confirm that SPEM scaffolds can serve as a promising biomaterial for tissue regeneration.

4.
Environ Res ; 209: 112925, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35149110

RESUMO

Ischemic heart disease (IHD) is the major reason for death worldwide. Therapeutic angiogenesis serves as an effective approach to treat IHD. Sericin (S), a natural silk protein is widely used in regenerative medicine due to its excellent bioactive properties. Graphene oxide (GO) is extensively used in the field of biomedicine due to its amazing capacity to interact with biomolecules. The main objectives of the present study are to synthesize sericin functionalized graphene oxide (SGO) nanocomposites to treat diseases associated with deficient angiogenesis. Carbodiimide induced cross-linking strategy was employed to functionalize graphene oxide using sericin. The SGO nanocomposites had wrinkled flake like structure with good blood biocompatibility. In vivo chick embryo angiogenesis (CEA) assay was performed to prove the angiogenic potency of SGO nanocomposites. CEA assay results clearly indicated the development of new blood vessels in SGO treated chick embryos when compared with the control.


Assuntos
Grafite , Nanocompostos , Sericinas , Animais , Embrião de Galinha , Grafite/química , Nanocompostos/química , Sericinas/química , Sericinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...