Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 18(2): 984-991, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448523

RESUMO

In the present investigation, we have fabricated copper oxide (CuO) thin film memristor by employing a hydrothermal method for neuromorphic application. The X-ray diffraction pattern confirms the films are polycrystalline in nature with the monoclinic crystal structure. The developed devices show analog memory and synaptic property similar to biological neuron. The size dependent synaptic behavior is investigated for as-prepared and annealed CuO memristor. The results suggested that the magnitude of synaptic weights and resistive switching voltages are dependent on the thickness of the active layer. Synaptic weights are improved in the case of the as-prepared device whereas they are inferior for annealed CuO memristor. The rectifying property similar to a biological neuron is observed only for the as-prepared device, which suggested that as-prepared devices have better computational and learning capabilities than annealed CuO memristor. Moreover, the retention loss of the CuO memristor is in good agreement with the forgetting curve of human memory. The results suggested that hydrothermally grown CuO thin film memristor is a potential candidate for the neuromorphic device development.

2.
J Pharm Biomed Anal ; 118: 370-379, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26600119

RESUMO

A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 µm column, with inlet filter (0.2 µm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product.


Assuntos
Cromatografia de Fase Reversa/métodos , Contaminação de Medicamentos , Omeprazol/análise , Omeprazol/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/tendências , Cromatografia de Fase Reversa/tendências , Limite de Detecção , Espectrometria de Massas/métodos , Espectrometria de Massas/tendências
3.
Photochem Photobiol Sci ; 10(10): 1652-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21799995

RESUMO

Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...