Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 54(3): 343-357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37531084

RESUMO

Microalgae are regarded as renewable resources of energy, foods and high-valued compounds using a biorefinery approach. In the present study, we explored isolated microalgae (Desmodesmus subspicatus) for the production of bio-energy molecules (carbohydrate and lipid). Optimizations of media (BG-11) components have been made using the Taguchi orthogonal array (TOA) technique to maximize biomass, carbohydrate and lipid production. Optimized results showed that biomass, carbohydrates and lipid productivity increased by 1.3 times at optimal combinations of media components than standard BG-11 media. Further, the influence of various carbon and nitrogen sources as nutritional supplement with optimum media composition under different light intensities was investigated for productivity of carbohydrate and lipid. Results demonstrated that 1.5 times higher productivity of carbohydrate and lipids were achieved in the presence optimum BG-11 under a broad range of light intensities (84-504 µmol m-2 s-1). Among different nitrogen sources, glycine was found to give higher productivity (1.5 times) followed by urea. Use of the cellulose as a carbon source in the media significantly increases biomass (2.4 times), carbohydrates (2.3 times) and lipids (2.3 times) productivity. Investigations revealed that cultivating Desmodesmus subspicatus under optimum culture conditions has the potential for large-scale bio-ethanol and bio-diesel production.


Assuntos
Celulose , Microalgas , Carbono , Suplementos Nutricionais , Hexoses , Nitrogênio , Lipídeos
2.
Int J Biol Macromol ; 253(Pt 7): 127412, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844815

RESUMO

The coating on fruits and vegetables increases the shelf-life by providing protection against their spoilage. The existing petroleum-based coating materials have considerable health threats. Edible coating materials prepared with the cellulose derivative extracted from the waste biomass could be a sustainable alternative and environment friendly process to increase the shelf-life periods of the post-harvest crops. Selection of suitable waste biomass and extraction of cellulose are the critical steps for the synthesis of cellulose-based edible film. Conversion of extracted cellulose into cellulosic macromolecular derivatives such as carboxy-methyl-cellulose (CMC) is vital for synthesizing edible coating formulation. Applications of sophisticated tools and methods for the characterization of the coated fruits would be helpful to determine the efficiency of the coating material. In this review, we focused on: i) criteria for the selection of suitable waste biomass for extraction of cellulose, ii) pretreatment and extraction process of cellulose from the different waste biomasses, iii) synthesis processes of CMC by using extracted cellulose, iv) characterizations of CMC as food coating materials, v) various formulation techniques for the synthesis of the CMC based food coating materials and vi) the parameters which are used to evaluate the shelf-life performance of different coated fruits.


Assuntos
Filmes Comestíveis , Carboximetilcelulose Sódica , Frutas , Biomassa , Conservação de Alimentos/métodos , Celulose
3.
Sci Total Environ ; 897: 165412, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429469

RESUMO

In recent decades, microalgae have drawn attention as a most feasible alternative and sustainable feedstock for biofuel production. However, laboratory-scale and pilot-scale studies revealed that producing only biofuels through the microalgal route is economically unfeasible. The high cost of synthetic media is one concern, and low-cost alternative cultivation media would replace synthetic media to culture microalgae for economic benefit. This paper critically consolidated the advantages of alternative media over synthetic media for microalgae cultivation. A comparative analysis of the compositions of synthetic and alternative media was made to evaluate the potential use of alternative media in microalgae cultivation. Investigations on microalgae cultivation using alternative media derived from different waste materials, such as domestic, farm, agricultural, industrial, etc., are highlighted. Vermiwash is another alternative media that contains essential micro and macronutrients required for the cultivation of microalgae. Two prime techniques, such as mix-waste culture media and recycling culture media, may provide more economic benefit for the large-scale production of microalgae.


Assuntos
Microalgas , Resíduos , Biocombustíveis , Agricultura , Fazendas , Biomassa
4.
Int J Pharm ; 640: 123018, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149113

RESUMO

Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Sistemas de Liberação de Medicamentos
5.
Prep Biochem Biotechnol ; 53(6): 634-652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36093762

RESUMO

In our current work, we have optimized six physicochemical parameters (light intensity, light period, pH, inoculum size, culture period, and salt concentration) toward growth and chlorophyll synthesis using isolated fresh water microalgae Chlorella thermophila [contains ∼6% (w/w on dry biomass basis) chlorophyll]. Here, both experimental and computational [Taguchi orthogonal array (TOA), artificial neural network (ANN), and genetic algorithm (GA)] approaches were employed for the process intensification. Results revealed that the content of biomass and chlorophyll were enhanced by 118% and 95%, respectively, with productivity enhancement of 30% for biomass and 61% for chlorophyll from the optimization of physicochemical parameters. Further, optimum light intensity was found to be 128 µmol m-2 s-1 after conducting experiments in optimized chemical and physicochemical conditions, contributing to the enhancement of productivity of 46% for biomass and 106% for chlorophyll. Urea was found to be the most effective nitrogen source with an increase of 70% and 160% biomass and chlorophyll productivity, respectively. Moreover, sucrose as a carbon source contributed to an increase of 97% and 264% biomass and chlorophyll productivity.


Assuntos
Chlorella , Microalgas , Clorofila , Chlorella/química , Luz , Biomassa
6.
Prep Biochem Biotechnol ; 52(10): 1173-1189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35234575

RESUMO

The production of multiple products from microalgae is essential for economic sustainability and the knowledge of optimum cultivation conditions for high growth and biomolecule synthesis of a microalgal strain is the prerequisite for its commercial production. In this work, optimization of nutrient concentrations for the cultivation of isolated Chlorella thermophila was performed by manipulating nine nutrients with the objectives of maximization of growth, carbohydrate, protein, and chlorophyll contents. Experiments were designed and effects of the parameters were studied using Taguchi orthogonal array (TOA). Experimental results of TOA were used for modeling artificial neural networks (ANN) followed by the optimization using genetic algorithm (GA) to find global optimal solutions. Results showed an increase of 36, 88, 36, and 88% for growth, carbohydrates, proteins, and chlorophylls, respectively, at optimal combinations of parameters given by TOA. Results obtained through the ANN-GA optimization were 9, 10, and 3% more compared to the TOA for biomass, carbohydrates, and chlorophylls, respectively with experimental verification. Nitrates and bicarbonate were found to play the most pivotal role in biomass and biomolecule synthesis of the isolated microalgal strain. Results of the current investigation can be used in the industrial scale-up for the production of multiple products using the biorefinery approach.


Assuntos
Chlorella , Microalgas , Biomassa , Carboidratos , Clorofila , Biocombustíveis
7.
Crit Rev Biotechnol ; 40(5): 590-607, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32375518

RESUMO

Microalgal biomass is composed of different valuable metabolites that can satisfy the requirements of renewable biofuels, alternative proteins, carbohydrates, and food grade natural colorants. Production of a specific product from microalgae has been proved to be economically infeasible on the commercial scale except for the production of high-value products (e.g. carotenoids and phycobiliproteins). Therefore, the simultaneous extraction of multiple products is essential to bring pragmatism for the production of biofuels, proteins, and carbohydrate derived products from microalgal biomass. In order to obtain multiple products, various strategies have been implemented using potential techniques of cell disruption and biomass fractionation based on the priorities of products. Conventional approaches of downstream processing have often proved to be inefficient in the case of integrated fractionation systems. This is attributable to the divergent nature of the intracellular metabolites of microalgae and their vulnerability toward the different chemicals and conditions of those downstream processes. However, three phase partitioning (TPP), aqueous two-phase separation, membrane separation, supercritical fluid extraction (SFE), and pressurized liquid extraction (PLE) are some of the advanced techniques which have been proved to be useful in this regard. Choice of cell disruption mechanisms is critical for several purposes, such as the selective release of metabolites into a suitable solvent, preservation of bioactivity of molecules and cost-savings. Unfortunately, consolidated report for the fractionation of priority-based products from microalgal biomass using these techniques is lacking. Therefore, in this review, we have critically discussed the different strategies for the priority-based multiple products by implementation of the advanced techniques.


Assuntos
Biotecnologia/métodos , Microalgas/metabolismo , Biocombustíveis , Produtos Biológicos/metabolismo , Biomassa , Metabolismo dos Carboidratos , Carboidratos , Carotenoides/metabolismo , Fracionamento Químico , Proteínas/metabolismo
8.
ACS Nano ; 7(12): 10597-611, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24237309

RESUMO

Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.


Assuntos
Portadores de Fármacos , Endocitose/imunologia , Receptor IGF Tipo 2/química , Receptores da Transferrina/química , Actinas/química , Animais , Sítios de Ligação , Cavéolas/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Ceramidas/química , Clatrina/química , Endossomos/química , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Poliestirenos/química , Esfingomielina Fosfodiesterase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...