Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102986, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754281

RESUMO

Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human viruses that causes significant morbidity and mortality worldwide. To persist in the cell and consequently cause disease, DENV is evolved with mechanisms to suppress the induction of type I interferons by antagonizing cGAS-STING signaling. Using recombinant proteins and in vitro cleavage assays, we have shown that the DENV protease NS2B3 is capable of cleaving cGAS in the N-terminal region without disrupting the C-terminal catalytic center. This generates two major cleavage products: cleavage product N-terminal (CP-N) and cleavage product C-terminal (CP-C). We observed reduction in DNA-binding affinity of CP-C as compared to full-length cGAS. Reduction in DNA-binding affinity is also correlated with the decrease in enzymatic activity of CP-C. CP-N, on the other hand, has almost comparable DNA-binding ability as that of the full-length cGAS. In fact, CP-N competitively inhibits cyclic GMP-AMP production by both full-length cGAS and CP-C. We hypothesize that high DNA-binding affinity of CP-N enables it to sequester the DNA from CP-C and noncleaved full-length cGAS and thus reduces the rate of enzyme activation and cyclic GMP-AMP synthesis. Furthermore, we found that NS2B3 physically interacts with full-length cGAS and CP-C, laying the basis for their shuttling to and eventual degradation in the autophagosome. Overall, our study highlights a multifaceted and effective strategy by which an RNA virus antagonizes cGAS-STING signaling which may be useful for the design of antivirals targeting viral proteases.


Assuntos
Vírus da Dengue , Nucleotidiltransferases , Peptídeo Hidrolases , Humanos , Vírus da Dengue/enzimologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(33): e2200285119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939686

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) inhibitor of cyclic GMP-AMP synthase (cGAS) (KicGAS) encoded by ORF52 is a conserved major tegument protein of KSHV and the first reported viral inhibitor of cGAS. In our previous study, we found that KicGAS is highly oligomerized in solution and that oligomerization is required for its cooperative DNA binding and for inhibiting DNA-induced phase separation and activation of cGAS. However, how KicGAS oligomerizes remained unclear. Here, we present the crystal structure of KicGAS at 2.5 Å resolution, which reveals an "L"-shaped molecule with each arm of the L essentially formed by a single α helix (α1 and α2). Antiparallel dimerization of α2 helices from two KicGAS molecules leads to a unique "Z"-shaped dimer. Surprisingly, α1 is also a dimerization domain. It forms a parallel dimeric leucine zipper with the α1 from a neighboring dimer, leading to the formation of an infinite chain of KicGAS dimers. Residues involved in leucine zipper dimer formation are among the most conserved residues across ORF52 homologs of gammaherpesviruses. The self-oligomerization increases the valence and cooperativity of interaction with DNA. The resultant multivalent interaction is critical for the formation of liquid condensates with DNA and consequent sequestration of DNA from being sensed by cGAS, explaining its role in restricting cGAS activation. The structure presented here not only provides a mechanistic understanding of the function of KicGAS but also informs a molecular target for rational design of antivirals against KSHV and related viruses.


Assuntos
Herpesvirus Humano 8 , Nucleotidiltransferases , Proteínas Estruturais Virais , Herpesvirus Humano 8/metabolismo , Humanos , Nucleotidiltransferases/metabolismo , Domínios Proteicos , Multimerização Proteica , Proteínas Estruturais Virais/química
3.
Nucleic Acids Res ; 49(16): 9389-9403, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34387695

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor that detects aberrant cytosolic DNA arising from pathogen invasions or genotoxic stresses. Upon binding to DNA, cGAS is activated and catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which induces potent antimicrobial and antitumor responses. Kaposi sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that causes Kaposi sarcoma and several other malignancies. We previously reported that KSHV inhibitor of cGAS (KicGAS) encoded by ORF52, inhibits cGAS enzymatic activity, but the underlying mechanisms remained unclear. To define the inhibitory mechanisms, here we performed in-depth biochemical and functional characterizations of KicGAS, and mapped its functional domains. We found KicGAS self-oligomerizes and binds to double stranded DNA cooperatively. This self-oligomerization is essential for its DNA binding and cGAS inhibition. Interestingly, KicGAS forms liquid droplets upon binding to DNA, which requires collective multivalent interactions with DNA mediated by both structured and disordered domains coordinated through the self-oligomerization of KicGAS. We also observed that KicGAS inhibits the DNA-induced phase separation and activation of cGAS. Our findings reveal a novel mechanism by which DNA viruses target the host protein phase separation for suppression of the host sensing of viral nucleic acids.


Assuntos
Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno/genética , Nucleotidiltransferases/genética , Sarcoma de Kaposi/genética , Citosol/enzimologia , Citosol/microbiologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Imunidade Inata/genética , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/antagonistas & inibidores , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/virologia , Proteínas Virais/genética
4.
Front Cell Infect Microbiol ; 11: 647992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791247

RESUMO

Sensing of viral constituents is the first and critical step in the host innate immune defense against viruses. In mammalian cells, there are a variety of pathogen recognition receptors (PRRs) that detect diverse pathogen-associated molecular patterns (PAMPs) including viral RNA and DNA. In the past decade, a number of host DNA sensors have been discovered and the underlying sensing mechanisms have been elucidated. Herpesviruses belong to a large family of enveloped DNA viruses. They are successful pathogens whose elaborate immune evasion mechanisms contribute to high prevalence of infection among their hosts. The three subfamilies of herpesviruses have all been found to employ diverse and overlapping strategies to interfere with host DNA sensing. These strategies include masking viral DNA or the DNA sensor, degradation of the DNA sensor, and post-transcriptional modification of the DNA sensor or its adaptor protein. In this review, we will discuss the current state of our knowledge on how human herpesviruses use these strategies to evade DNA-induced immune responses. Comprehensive understanding of herpesvirus immune-evasion mechanisms will aid in the development of vaccines and antivirals for herpesvirus-associated diseases.


Assuntos
Herpesviridae , Imunidade Inata , Animais , DNA Viral , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Moléculas com Motivos Associados a Patógenos
5.
Biophys J ; 112(5): 901-910, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297649

RESUMO

The Escherichia coli RNA polymerase (RNAP) is a multisubunit protein complex containing the smallest subunit, ω. Despite the evolutionary conservation of ω and its role in assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of RNAP with the global chaperone protein GroEL. With an aim to get better insight into the structure and functional role of ω, we isolated a dominant negative mutant of ω (ω6), which is predominantly α-helical, in contrast to largely unstructured native ω, and then studied its assembly with reconstituted core1 (α2ßß') by a biophysical approach. The mutant showed higher binding affinity compared to native ω. We observed that the interaction between core1 and ω6 is driven by highly negative enthalpy and a small but unfavorable negative entropy term. Extensive structural alteration in ω6 makes it more rigid, the plasticity of the interacting domain formed by ω6 and core1 is compromised, which may be responsible for the entropic cost. Such tight binding of the structured mutant (ω6) affects initiation of transcription. However, once preinitiated, the complex elongates the RNA chain efficiently. The initiation of transcription requires recognition of appropriate σ-factors by the core enzyme (core2: α2ßß'ω). We found that the altered core enzyme (α2ßß'ω6) with mutant ω showed a decrease in binding affinity to the σ-factors (σ70, σ32 and σ38) compared to that of the core enzyme containing native ω. In the absence of unstructured ω, the association of σ-factors to the core is less efficient, suggesting that the flexible native ω plays a direct role in σ-factor recruitment.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fator sigma/metabolismo , Termodinâmica
6.
J Biomol Struct Dyn ; 35(6): 1260-1271, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27064820

RESUMO

The binding of the anilido aminoacridine derivative amsacrine with the heme proteins, hemoglobin, and myoglobin, was characterized by various spectroscopic and calorimetric methods. The binding affinity to hemoglobin was (1.21 ± .05) × 105 M-1, while that to myoglobin was three times higher (3.59 ± .15) × 105 M-1. The temperature-dependent fluorescence study confirmed the formation of ground-state complexes with both the proteins. The stronger binding to myoglobin was confirmed from both spectroscopic and calorimetric studies. The binding was exothermic in both cases at the three temperatures studied, and was favored by both enthalpy and entropy changes. Circular dichroism results, three-dimensional (3D) and synchronous fluorescence studies confirmed that the binding of amsacrine significantly changed the secondary structure of hemoglobin, while the change in the secondary structure of myoglobin was much less. New insights, in terms of structural and energetic aspects of the interaction of amsacrine with the heme proteins, presented here may help in understanding the structure-activity relationship, therapeutic efficacy, and drug design aspects of acridines.


Assuntos
Amsacrina/química , Calorimetria , Hemoglobinas/química , Mioglobina/química , Análise Espectral , Amsacrina/metabolismo , Calorimetria/métodos , Hemoglobinas/metabolismo , Humanos , Ligantes , Estrutura Molecular , Mioglobina/metabolismo , Ligação Proteica , Análise Espectral/métodos , Termodinâmica
7.
Mini Rev Med Chem ; 16(2): 104-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26349491

RESUMO

Berberine is one of the most widely known alkaloids belonging to the protoberberine group exhibiting myriad therapeutic properties. The anticancer potency of berberine appears to derive from its multiple actions including strong interaction with nucleic acids exhibiting adenine-thymine base pair specificity, inhibition of the enzymes topoisomerases and telomerases, and stabilizing the quadruplex structures. It was realized that the development of berberine as a potential anticancer agent necessitates enhancing its nucleic acid binding efficacy through appropriate structural modifications. More recently a number of such approaches have been attempted in various laboratories with great success. Several derivatives have been synthesized mostly with substitutions at the 8, 9 and 13 positions of the isoquinoline chromophore, and studied for enhanced nucleic acid binding activity. In this article, we present an up to date review of the details of the interaction of berberine and several of its important synthetic 8, 9 and 13 substituted derivatives with various nucleic acid structures reported recently. These studies provide interesting knowledge on the mode, mechanism, sequence and structural specificity of the binding of berberine derivatives and correlate structural and energetic aspects of the interaction providing better understanding of the structure- activity relations for designing and development of berberine based therapeutic agents with higher efficacy and therapeutic potential.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Berberina/análogos & derivados , Berberina/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácidos Nucleicos/química , Antineoplásicos/síntese química , Berberina/síntese química , Berberina/farmacologia , Sítios de Ligação/efeitos dos fármacos , DNA Topoisomerases/metabolismo , Inibidores Enzimáticos/síntese química , Humanos , Ácidos Nucleicos/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Telomerase/metabolismo
8.
J Mol Recognit ; 28(12): 722-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26138009

RESUMO

G-quadruplex forming sequences are widely distributed in human genome and serve as novel targets for regulating gene expression and chromosomal maintenance. They offer unique targets for anticancer drug development. Here, the interaction of berberine (BC) and two of its analogs bearing substitution at 9 and 13-position with human telomeric G-quadruplex DNA sequence has been investigated by biophysical techniques. Both the analogs exhibited several-fold higher binding affinity than berberine. The Scatchard binding isotherms revealed non-cooperative binding. 9-ω-amino hexyl ether analog (BC1) showed highest affinity (1.8 × 10(6) M(-1)) while the affinity of the 13-phenylpropyl analog (BC2) was 1.09 × 10(6) M(-1). Comparative fluorescence quenching and polarization anisotropy of the emission spectra gave evidence for a stronger stacking interaction of the analogs compared to berberine. The thiazole orange displacement assay has clearly established that the analogs were more effective in displacing the end stacked dye in comparison to berberine. However, the binding of the analogs did not induce any major structural perturbation in the G-quadruplex structure, but led to higher thermal stability. Energetics of the binding indicated that the association of the analogs was exothermic and predominantly entropy driven phenomenon. Increasing the temperature resulted in weaker binding; the enthalpic contribution increased and the entropic contribution decreased. A small negative heat capacity change with significant enthalpy-entropy compensation established the involvement of multiple weak noncovalent interactions in the binding process. The 9-ω-amino hexyl ether analog stabilized the G-quadruplex structure better than the 13-phenyl alkyl analog.


Assuntos
Berberina/análise , Cromossomos Humanos , DNA/química , Quadruplex G , Telômero/química , Termodinâmica , Berberina/química , Sítios de Ligação , Calorimetria , Dicroísmo Circular , Humanos , Espectrometria de Fluorescência , Temperatura
9.
J Phys Chem B ; 119(6): 2090-102, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24673409

RESUMO

Interactions of the anionic surfactant sodium dodecyl sulfate (SDS) with the transport proteins bovine serum albumin (BSA) and human serum albumin (HSA) have been divulged using an external photoinduced proton transfer probe, norharmane (NHM). Steady-state fluorometry, time-resolved measurements, micropolarity analysis, circular dichroism (CD), and isothermal titration calorimetry (ITC) have been exploited for the study. With the gradual addition of SDS to the probe-bound proteins, the fluorometric responses of the different prototropic species of NHM exhibit an opposite pattern as to that observed while NHM binds to the proteins. The study reveals a sequential unfolding of the serum proteins with the gradual addition of SDS. ITC measures the heat changes associated with each step of the unfolding. ITC experiments, carried out at two different pH's, elucidate the nature of interaction between SDS and the two serum proteins. At a very high concentration of SDS, the external probe (NHM) is found to be dislodged from the protein environments to bind to the SDS micellar medium.


Assuntos
Carbolinas/química , Desdobramento de Proteína/efeitos dos fármacos , Prótons , Soroalbumina Bovina/química , Dodecilsulfato de Sódio/química , Tensoativos/farmacologia , Absorção Fisico-Química , Animais , Bovinos , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína
10.
Artigo em Inglês | MEDLINE | ID: mdl-24184628

RESUMO

In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.


Assuntos
Berberina/análogos & derivados , Berberina/farmacologia , DNA/metabolismo , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/metabolismo , Dicroísmo Circular , DNA/química , Modelos Moleculares , Poli A/química , Poli A/metabolismo , RNA/química , Espectrometria de Fluorescência , Termodinâmica
11.
J Photochem Photobiol B ; 129: 57-68, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24177205

RESUMO

The interaction of the natural benzophenanthridine alkaloid chelerythrine with DNA was studied by spectroscopy, viscometry and calorimetry techniques. The absorbance and fluorescence properties of the alkaloid were remarkably modified upon binding to DNA and the interaction was found to be cooperative. The mode of binding was principally by intercalation as revealed from viscosity studies and supported from fluorescence quenching, and polarization results. The binding remarkably stabilized the DNA structure against thermal strand separation. The binding induced conformational changes in the B-form structure of the DNA and the bound alkaloid molecule acquired induced circular dichroism. The binding affinity values obtained from spectroscopy, fluorescence polarization (and anisotropy) and calorimetry were in agreement with each other. The binding was exothermic, characterized by negative enthalpy and positive entropy change and exhibited enthalpy-entropy compensation phenomenon. The heat capacity changes of the binding revealed hydrophobic contribution to the binding. Molecular aspects of the interaction characterized by the involvement of multiple weak noncovalent forces are presented.


Assuntos
Aminas/química , Benzofenantridinas/metabolismo , DNA/metabolismo , Iminas/química , Substâncias Intercalantes/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Aminas/metabolismo , Animais , Benzofenantridinas/química , Bovinos , Dicroísmo Circular , DNA/química , Transferência de Energia , Iminas/metabolismo , Substâncias Intercalantes/química , Concentração Osmolar , Temperatura , Termodinâmica , Viscosidade
12.
Mol Biol Rep ; 40(9): 5439-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23666107

RESUMO

Isoquinoline alkaloids and their analogs represent an important class of molecules for their broad range of clinical and pharmacological utility. These compounds are of current interest owing to their low toxicity and excellent chemo preventive properties. These alkaloids can play important role in stabilising the nucleic acid triple helices. The present study has focused on the interaction of five 9-O-(ω-amino) alkyl ether berberine analogs with the DNA triplex poly(dT)·poly(dA)*poly(dT) and the parent duplex poly(dA)·poly(dT) studied using various biophysical techniques. Scatchard analysis of the spectral data indicated that the analogs bind both to the duplex and triplex in a non-cooperative manner in contrast to the cooperative binding of berberine to the DNA triplex. Strong intercalative binding to the DNA triplex structure was revealed from ferrocyanide quenching, fluorescence polarization and viscosity results. Thermal melting studies demonstrated higher stabilization of the Hoogsteen base paired third strand of the DNA triplex compared to the Watson-Crick strand. Circular dichroism studies suggested a stronger perturbation of the DNA triplex conformation by the alkaloid analogs compared to the duplex. The binding was entropy-driven in each case and the entropy contribution to free energy increased as the length of the alkyl side chain increased. The analogs exhibited stronger binding affinity to the triple helical structure compared to the parent double helical structure.


Assuntos
Alcaloides de Berberina/metabolismo , DNA/química , Polidesoxirribonucleotídeos/metabolismo , Alcaloides de Berberina/química , Biofísica , Calorimetria , Dicroísmo Circular , Ferrocianetos , Fluorescência , Estrutura Molecular , Polidesoxirribonucleotídeos/química , Termodinâmica , Temperatura de Transição
13.
PLoS One ; 7(5): e37939, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666416

RESUMO

BACKGROUND: Binding of two 9-O-(ω-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)(•)poly(A)(*)poly(U) was studied by various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS: Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5 °C compared to a 17.5 °C stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. CONCLUSIONS/SIGNIFICANCE: Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena.


Assuntos
Berberina/análogos & derivados , Berberina/farmacologia , Fenômenos Biofísicos , Poli A/química , Poli U/química , Estabilidade de RNA/efeitos dos fármacos , RNA/química , Berberina/metabolismo , Elétrons , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Poli A/metabolismo , Poli U/metabolismo , RNA/metabolismo , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Viscosidade
14.
J Phys Chem B ; 116(7): 2314-24, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22276583

RESUMO

The structural effects and thermodynamics of the DNA binding of six berberine analogues with alkyl chains of varying length and a terminal phenyl group at the C-13 position were investigated. All the analogues bound DNA noncooperatively in contrast to the cooperative binding of berberine. The binding affinity was higher and the effect of the chain length was only up to (CH(2))(3), after which the binding affinity decreased slightly. Intercalative binding with strong stabilization of the DNA helix was revealed. Binding resulted in the weakening of the base stacking with moderate conformational changes within the B-form. The binding was entropy driven in each case, the entropy contribution to the free energy increasing with the chain length up to the threshold (CH(2))(3). The complexation was dominated by nonpolyelectrolytic forces in each case; polyelectrolytic forces contributed only a quarter to the total free energy at 50 mM [Na(+)]. Overall, the phenylalkyl substitution at the C-13 position considerably enhanced the DNA binding and was highest for the analogue with (CH(2))(3). Structural and thermodynamic data on the DNA binding aspects of the substituted berberines are presented in comparison with berberine.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , DNA/metabolismo , Animais , Sítios de Ligação , Varredura Diferencial de Calorimetria , Bovinos , DNA/química , Humanos , Neoplasias/tratamento farmacológico , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...