Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(30): 10526-10538, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28669181

RESUMO

In the transition to a clean-energy future, CO2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO2 adsorption, large CO2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO2 adsorption isotherms resulting from cooperative and reversible insertion of CO2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO2 separation process. The unparalleled versatility of these materials, coupled with their high CO2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO2 separations.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Diaminas/química , Magnésio/química , Estruturas Metalorgânicas/química , Adsorção , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
2.
Nat Mater ; 11(7): 633-41, 2012 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-22635045

RESUMO

One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO(2) from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies.


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Informática , Adsorção , Imidazóis/química , Modelos Moleculares , Conformação Molecular , Pressão , Dióxido de Silício/química , Temperatura , Zeolitas/química
3.
Environ Sci Technol ; 45(20): 8624-32, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21905745

RESUMO

The Electric Power Research Institute (EPRI) undertook a multiyear effort to understand the landscape of postcombustion CO2 capture technologies globally. In this paper we discuss several central issues facing CO2 capture involving scale, energy, and overall status of development. We argue that the scale of CO2 emissions is sufficiently large to place inherent limits on the types of capture processes that could be deployed broadly. We also discuss the minimum energy usage in terms of a parasitic load on a power plant. Finally, we present summary findings of the landscape of capture technologies using an index of technology readiness levels.


Assuntos
Poluição do Ar/prevenção & controle , Dióxido de Carbono/análise , Conservação dos Recursos Naturais/métodos , Centrais Elétricas , Dióxido de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...