Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(3): e56135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623139

RESUMO

Birth-associated structural issues with the heart are known as congenital heart disorders or defects. They might alter the heart's regular blood flow. A 10-month-old female child presented to a tertiary care hospital with symptoms of recurrent cyanotic spells with episodes of desaturation a few months after birth. ECG findings depicted a normal sinus rhythm with a right axis deviation along the right ventricular forces. Two-dimensional echocardiography showed a tetralogy of Fallot with pulmonary atresia with a patent ductus arteriosus from the undersurface of the arch with confluent small pulmonary arteries. A coronary wire was passed through the left subclavian artery, and a 4 × 16 mm stent was deployed successfully. After the procedure, the patient's saturation improved, and she was extubated on the table. The patient was on heparin for 24 hours and was started on oral aspirin thereafter. This case was discharged on the third postoperative day and was advised to follow up.

2.
Cureus ; 14(11): e31346, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523660

RESUMO

This article examines the compositions of bone tissue grafting and presents tissue culture and engineering formally as an approach for orthopaedic surgery. We assessed articles on bone grafts, analyzed their properties, advantages, and restrictions, and delivered explanations on technologies, including bone-tissue engineering (BTE). Osteo graft materials range from real human bone autografts (self-grafts) to substitute materials that can be used as grafts. These can be used single-handedly or conjointly to improve bone healing and regeneration. Tissue engineering is a relatively newer and evolving alternative for reducing the challenges of bone grafts and improving the rehabilitation of bone fractures and defects. Shortly, the combination of scaffolds, healing factors, gene therapy, and, more recently, 3D printing of tissue-engineered constructs may yield new perceptions. Natural bone tissue has a nanocomposite structure that offers the right biological and physical characteristics. It is essential that the biomaterial resemble real bone tissue in order to regenerate bone tissue. Because they can offer the correct matrix environment, combine desirable biological features, and allow regulated, sequential distribution of numerous growth factors for the different phases of bone tissue regeneration, nanocomposites are the ideal alternative for bone tissue regeneration. This is because no single type of material can replicate the composition, structure, and characteristics of native bone. A relatively new class of materials called nanocomposite biomaterials combines a biopolymeric and biodegradable matrix structure with nanoscale fillers that are bioactive and easily resorbable. There are also some things to think about when using nanoparticles and nanocomposites as scaffolds in clinical settings for bone tissue engineering.

3.
Cureus ; 14(9): e29071, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36258985

RESUMO

There is no escaping Internet's favorite buzzword for 2022: The Metaverse. Everyone is talking about it, but only a few know what it is or how it works. One can look at the Metaverse as a 3D model of the Internet where it is possible to spend your reality parallel to the virtual world. In broad terms, Metaverse can be explained as a virtual space, graphically rich, leaning towards verisimilitude where people can do all sorts of things they do in real-life such as shop, play, socialize, and party. The pandemic has accelerated innovations in the digital age. Looking beyond revolutions in telehealth, payments, remote monitoring, and secure data-sharing are other essential innovations in the fields of artificial intelligence (AI), virtual reality (VR), augmented reality (AR), and blockchain technology. The Metaverse is still in its nascent stage and evolving continuously, having a huge potential in health care to combine the technologies of AI, AR/VR, web 3.0, Internet of medical devices, and quantum computing, along with robotics to give a new direction to healthcare systems. From improving surgical precision to therapeutic usage and more, the Metaverse can bring significant changes to the industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...